A posteriori error analysis for Poisson's equation approximated by XFEM
ESAIM. Proceedings, Tome 27 (2009), pp. 107-121.

Voir la notice de l'article provenant de la source EDP Sciences

This paper presents and studies a residual a posteriori error estimator for Laplace's equation in two space dimensions approximated by the eXtended Finite Element Method (XFEM). The XFEM allows to perform finite element computations on multi-cracked domains by using meshes of the non-cracked domain. The main idea consists of adding supplementary basis functions of Heaviside type and singular functions in order to take into account the crack geometry and the singularity at the crack tip respectively.
DOI : 10.1051/proc/2009022

Patrick Hild 1 ; Vanessa Lleras 2 ; Yves Renard 3

1 Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, U niversité de Franche-Comté, 16 route de Gray, 25030 Besançon, France;
2 Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon, France;
3 Institut Camille Jordan, UMR CNRS 5208, INSA de Lyon, 20 rue Albert Einstein, 69621 Villeurbanne, France;
@article{EP_2009_27_a6,
     author = {Patrick Hild and Vanessa Lleras and Yves Renard},
     title = {A posteriori error analysis for {Poisson's} equation approximated by {XFEM}},
     journal = {ESAIM. Proceedings},
     pages = {107--121},
     publisher = {mathdoc},
     volume = {27},
     year = {2009},
     doi = {10.1051/proc/2009022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/2009022/}
}
TY  - JOUR
AU  - Patrick Hild
AU  - Vanessa Lleras
AU  - Yves Renard
TI  - A posteriori error analysis for Poisson's equation approximated by XFEM
JO  - ESAIM. Proceedings
PY  - 2009
SP  - 107
EP  - 121
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/2009022/
DO  - 10.1051/proc/2009022
LA  - en
ID  - EP_2009_27_a6
ER  - 
%0 Journal Article
%A Patrick Hild
%A Vanessa Lleras
%A Yves Renard
%T A posteriori error analysis for Poisson's equation approximated by XFEM
%J ESAIM. Proceedings
%D 2009
%P 107-121
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/2009022/
%R 10.1051/proc/2009022
%G en
%F EP_2009_27_a6
Patrick Hild; Vanessa Lleras; Yves Renard. A posteriori error analysis for Poisson's equation approximated by XFEM. ESAIM. Proceedings, Tome 27 (2009), pp. 107-121. doi : 10.1051/proc/2009022. http://geodesic.mathdoc.fr/articles/10.1051/proc/2009022/

Cité par Sources :