An inverse problem for faults in elastic half space
ESAIM. Proceedings, Tome 26 (2009), pp. 1-23.

Voir la notice de l'article provenant de la source EDP Sciences

This paper starts from a model in geophysics for the quasi static evolution of displacement fields occurring during the destabilization of fractured plates. We use the equations of linear elasticity in half space with traction free conditions on the surface and given tangential dislocations on the fault. We first discuss the derivation of the adequate Green's tensor for this problem. We then use this Green's tensor to obtain a simple and efficient approximation to the surface displacement field. Next we show how to solve the fault inverse problem from measurements of surface displacements. We first give the solution in closed form. We then illustrate it on numerical examples which demonstrate the robustness of our reconstruction algorithm.

DOI : 10.1051/proc/2009002

Darko Volkov 1

1 Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester MA 01609, United States;
@article{EP_2009_26_a1,
     author = {Darko Volkov},
     title = {An inverse problem for faults in elastic half space},
     journal = {ESAIM. Proceedings},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {26},
     year = {2009},
     doi = {10.1051/proc/2009002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/2009002/}
}
TY  - JOUR
AU  - Darko Volkov
TI  - An inverse problem for faults in elastic half space
JO  - ESAIM. Proceedings
PY  - 2009
SP  - 1
EP  - 23
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/2009002/
DO  - 10.1051/proc/2009002
LA  - en
ID  - EP_2009_26_a1
ER  - 
%0 Journal Article
%A Darko Volkov
%T An inverse problem for faults in elastic half space
%J ESAIM. Proceedings
%D 2009
%P 1-23
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/2009002/
%R 10.1051/proc/2009002
%G en
%F EP_2009_26_a1
Darko Volkov. An inverse problem for faults in elastic half space. ESAIM. Proceedings, Tome 26 (2009), pp. 1-23. doi : 10.1051/proc/2009002. http://geodesic.mathdoc.fr/articles/10.1051/proc/2009002/

Cité par Sources :