Local Collapses in the Truscott-Brindley Model
Mathematical modelling of natural phenomena, Tome 3 (2008) no. 4, pp. 114-130
Voir la notice de l'article provenant de la source EDP Sciences
Relaxation oscillations are limit cycles with two clearly different time scales. In this article the spatio-temporal dynamics of a standard prey-predator system in the parameter region of relaxation oscillation is investigated. Both prey and predator population are distributed irregularly at a relatively high average level between a maximal and a minimal value. However, the slowly developing complex pattern exhibits a feature of “inverse excitability”: Both populations show collapses which occur erratically both in space and in time. The nature of these collapses is analysed statistically and it is shown that the model behaviour can be interpreted as a resolution of the paradox of enrichment.
@article{10_1051_mmnp:2008066,
author = {I. Siekmann and H. Malchow},
title = {Local {Collapses} in the {Truscott-Brindley} {Model}},
journal = {Mathematical modelling of natural phenomena},
pages = {114--130},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {2008},
doi = {10.1051/mmnp:2008066},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008066/}
}
TY - JOUR AU - I. Siekmann AU - H. Malchow TI - Local Collapses in the Truscott-Brindley Model JO - Mathematical modelling of natural phenomena PY - 2008 SP - 114 EP - 130 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008066/ DO - 10.1051/mmnp:2008066 LA - en ID - 10_1051_mmnp:2008066 ER -
I. Siekmann; H. Malchow. Local Collapses in the Truscott-Brindley Model. Mathematical modelling of natural phenomena, Tome 3 (2008) no. 4, pp. 114-130. doi: 10.1051/mmnp:2008066
Cité par Sources :