Lévy Processes, Saltatory Foraging, and Superdiffusion
Mathematical modelling of natural phenomena, Tome 3 (2008) no. 3, pp. 115-130.

Voir la notice de l'article provenant de la source EDP Sciences

It is well established that resource variability generated by spatial patchiness and turbulence is an important influence on the growth and recruitment of planktonic fish larvae. Empirical data show fractal-like prey distributions, and simulations indicate that scale-invariant foraging strategies may be optimal. Here we show how larval growth and recruitment in a turbulent environment can be formulated as a hitting time problem for a jump-diffusion process. We present two theoretical results. Firstly, if jumps are of a fixed size and occur as a Poisson process (embedded within a drift-diffusion), recruitment is effectively described by a diffusion process alone. Secondly, in the absence of diffusion, and for “patchy” jumps (of negative binomial size with Pareto inter-arrivals), the encounter process becomes superdiffusive. To synthesise these results we conduct a strategic simulation study where “patchy” jumps are embedded in a drift-diffusion process. We conclude that increasingly Lévy-like predator foraging strategies can have a significantly positive effect on recruitment at the population level.
DOI : 10.1051/mmnp:2008060

J. F. Burrow 1 ; P. D. Baxter 2 ; J. W. Pitchford 1, 3

1 Department of Mathematics and York Centre for Complex Systems Analysis, University of York, York, UK
2 Department of Statistics, University of Leeds, Leeds, UK
3 Department of Biology, University of York, York, UK
@article{MMNP_2008_3_3_a4,
     author = {J. F. Burrow and P. D. Baxter and J. W. Pitchford},
     title = {L\'evy {Processes,} {Saltatory} {Foraging,} and {Superdiffusion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {115--130},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2008},
     doi = {10.1051/mmnp:2008060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008060/}
}
TY  - JOUR
AU  - J. F. Burrow
AU  - P. D. Baxter
AU  - J. W. Pitchford
TI  - Lévy Processes, Saltatory Foraging, and Superdiffusion
JO  - Mathematical modelling of natural phenomena
PY  - 2008
SP  - 115
EP  - 130
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008060/
DO  - 10.1051/mmnp:2008060
LA  - en
ID  - MMNP_2008_3_3_a4
ER  - 
%0 Journal Article
%A J. F. Burrow
%A P. D. Baxter
%A J. W. Pitchford
%T Lévy Processes, Saltatory Foraging, and Superdiffusion
%J Mathematical modelling of natural phenomena
%D 2008
%P 115-130
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008060/
%R 10.1051/mmnp:2008060
%G en
%F MMNP_2008_3_3_a4
J. F. Burrow; P. D. Baxter; J. W. Pitchford. Lévy Processes, Saltatory Foraging, and Superdiffusion. Mathematical modelling of natural phenomena, Tome 3 (2008) no. 3, pp. 115-130. doi : 10.1051/mmnp:2008060. http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008060/

Cité par Sources :