An Age and Spatially Structured Population Model for Proteus Mirabilis Swarm-Colony Development
Mathematical modelling of natural phenomena, Tome 3 (2008) no. 7, pp. 49-77
Voir la notice de l'article provenant de la source EDP Sciences
Proteus mirabilis are bacteria that make strikingly regular spatial-temporal patterns on agar surfaces. In this paper we investigate a mathematical model that has been shown to display these structures when solved numerically. The model consists of an ordinary differential equation coupled with a partial differential equation involving a first-order hyperbolic aging term together with nonlinear degenerate diffusion. The system is shown to admit global weak solutions.
@article{10_1051_mmnp:2008041,
author = {Ph. Lauren\c{c}ot and Ch. Walker},
title = {An {Age} and {Spatially} {Structured} {Population} {Model} for {Proteus} {Mirabilis} {Swarm-Colony} {Development}},
journal = {Mathematical modelling of natural phenomena},
pages = {49--77},
publisher = {mathdoc},
volume = {3},
number = {7},
year = {2008},
doi = {10.1051/mmnp:2008041},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008041/}
}
TY - JOUR AU - Ph. Laurençot AU - Ch. Walker TI - An Age and Spatially Structured Population Model for Proteus Mirabilis Swarm-Colony Development JO - Mathematical modelling of natural phenomena PY - 2008 SP - 49 EP - 77 VL - 3 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008041/ DO - 10.1051/mmnp:2008041 LA - en ID - 10_1051_mmnp:2008041 ER -
%0 Journal Article %A Ph. Laurençot %A Ch. Walker %T An Age and Spatially Structured Population Model for Proteus Mirabilis Swarm-Colony Development %J Mathematical modelling of natural phenomena %D 2008 %P 49-77 %V 3 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008041/ %R 10.1051/mmnp:2008041 %G en %F 10_1051_mmnp:2008041
Ph. Laurençot; Ch. Walker. An Age and Spatially Structured Population Model for Proteus Mirabilis Swarm-Colony Development. Mathematical modelling of natural phenomena, Tome 3 (2008) no. 7, pp. 49-77. doi: 10.1051/mmnp:2008041
Cité par Sources :