Global Existence and Boundedness of Solutions to a Model of Chemotaxis
Mathematical modelling of natural phenomena, Tome 3 (2008) no. 7, pp. 17-35
Voir la notice de l'article provenant de la source EDP Sciences
A model of chemotaxis is analyzed that prevents blow-up of solutions. The model consists of a system of nonlinear partial differential equations for the spatial population density of a species and the spatial concentration of a chemoattractant in n-dimensional space. We prove the existence of solutions, which exist globally, and are L∞-bounded on finite time intervals. The hypotheses require nonlocal conditions on the species-induced production of the chemoattractant.
Affiliations des auteurs :
J. Dyson 1 ; R. Villella-Bressan 2 ; G. F. Webb 3
@article{10_1051_mmnp:2008039,
author = {J. Dyson and R. Villella-Bressan and G. F. Webb},
title = {Global {Existence} and {Boundedness} of {Solutions} to a {Model} of {Chemotaxis}},
journal = {Mathematical modelling of natural phenomena},
pages = {17--35},
publisher = {mathdoc},
volume = {3},
number = {7},
year = {2008},
doi = {10.1051/mmnp:2008039},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008039/}
}
TY - JOUR AU - J. Dyson AU - R. Villella-Bressan AU - G. F. Webb TI - Global Existence and Boundedness of Solutions to a Model of Chemotaxis JO - Mathematical modelling of natural phenomena PY - 2008 SP - 17 EP - 35 VL - 3 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008039/ DO - 10.1051/mmnp:2008039 LA - en ID - 10_1051_mmnp:2008039 ER -
%0 Journal Article %A J. Dyson %A R. Villella-Bressan %A G. F. Webb %T Global Existence and Boundedness of Solutions to a Model of Chemotaxis %J Mathematical modelling of natural phenomena %D 2008 %P 17-35 %V 3 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008039/ %R 10.1051/mmnp:2008039 %G en %F 10_1051_mmnp:2008039
J. Dyson; R. Villella-Bressan; G. F. Webb. Global Existence and Boundedness of Solutions to a Model of Chemotaxis. Mathematical modelling of natural phenomena, Tome 3 (2008) no. 7, pp. 17-35. doi: 10.1051/mmnp:2008039
Cité par Sources :