Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit
Mathematical modelling of natural phenomena, Tome 2 (2007) no. 4, pp. 135-151
Voir la notice de l'article provenant de la source EDP Sciences
The nonlocal Fisher equation has been proposed as a simple model exhibiting Turing instability and the interpretation refers to adaptive evolution. By analogy with other formalisms used in adaptive dynamics, it is expected that concentration phenomena (like convergence to a sum of Dirac masses) will happen in the limit of small mutations. In the present work we study this asymptotics by using a change of variables that leads to a constrained Hamilton-Jacobi equation. We prove the convergence analytically and illustrate it numerically. We also illustrate numerically how the constraint is related to the concentration points. We investigate numerically some features of these concentration points such as their weights and their numbers. We show analytically how the constrained Hamilton-Jacobi gives the so-called canonical equation relating their motion with the selection gradient. We illustrate this point numerically.
Affiliations des auteurs :
Benoît Perthame 1 ; Stephane Génieys 2
@article{10_1051_mmnp:2008029,
author = {Beno{\^\i}t Perthame and Stephane G\'enieys},
title = {Concentration in the {Nonlocal} {Fisher} {Equation:} the {Hamilton-Jacobi} {Limit}},
journal = {Mathematical modelling of natural phenomena},
pages = {135--151},
publisher = {mathdoc},
volume = {2},
number = {4},
year = {2007},
doi = {10.1051/mmnp:2008029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008029/}
}
TY - JOUR AU - Benoît Perthame AU - Stephane Génieys TI - Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit JO - Mathematical modelling of natural phenomena PY - 2007 SP - 135 EP - 151 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008029/ DO - 10.1051/mmnp:2008029 LA - en ID - 10_1051_mmnp:2008029 ER -
%0 Journal Article %A Benoît Perthame %A Stephane Génieys %T Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit %J Mathematical modelling of natural phenomena %D 2007 %P 135-151 %V 2 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008029/ %R 10.1051/mmnp:2008029 %G en %F 10_1051_mmnp:2008029
Benoît Perthame; Stephane Génieys. Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit. Mathematical modelling of natural phenomena, Tome 2 (2007) no. 4, pp. 135-151. doi: 10.1051/mmnp:2008029
Cité par Sources :