Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit
Mathematical modelling of natural phenomena, Tome 2 (2007) no. 4, pp. 135-151.

Voir la notice de l'article provenant de la source EDP Sciences

The nonlocal Fisher equation has been proposed as a simple model exhibiting Turing instability and the interpretation refers to adaptive evolution. By analogy with other formalisms used in adaptive dynamics, it is expected that concentration phenomena (like convergence to a sum of Dirac masses) will happen in the limit of small mutations. In the present work we study this asymptotics by using a change of variables that leads to a constrained Hamilton-Jacobi equation. We prove the convergence analytically and illustrate it numerically. We also illustrate numerically how the constraint is related to the concentration points. We investigate numerically some features of these concentration points such as their weights and their numbers. We show analytically how the constrained Hamilton-Jacobi gives the so-called canonical equation relating their motion with the selection gradient. We illustrate this point numerically.
DOI : 10.1051/mmnp:2008029

Benoît Perthame 1 ; Stephane Génieys 2

1 Département de Mathématiques et Applications, Ecole Normale Supérieure, CNRS UMR 8553, 45 rue d'Ulm, F 75230 Paris cedex 05
2 Université de Lyon, Université Lyon1, CNRS UMR 5208 Institut Camille Jordan, F - 69200 Villeurbanne Cedex, France
@article{MMNP_2007_2_4_a6,
     author = {Beno{\^\i}t Perthame and Stephane G\'enieys},
     title = {Concentration in the {Nonlocal} {Fisher} {Equation:} the {Hamilton-Jacobi} {Limit}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {135--151},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {2007},
     doi = {10.1051/mmnp:2008029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008029/}
}
TY  - JOUR
AU  - Benoît Perthame
AU  - Stephane Génieys
TI  - Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit
JO  - Mathematical modelling of natural phenomena
PY  - 2007
SP  - 135
EP  - 151
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008029/
DO  - 10.1051/mmnp:2008029
LA  - en
ID  - MMNP_2007_2_4_a6
ER  - 
%0 Journal Article
%A Benoît Perthame
%A Stephane Génieys
%T Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit
%J Mathematical modelling of natural phenomena
%D 2007
%P 135-151
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008029/
%R 10.1051/mmnp:2008029
%G en
%F MMNP_2007_2_4_a6
Benoît Perthame; Stephane Génieys. Concentration in the Nonlocal Fisher Equation: the Hamilton-Jacobi Limit. Mathematical modelling of natural phenomena, Tome 2 (2007) no. 4, pp. 135-151. doi : 10.1051/mmnp:2008029. http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008029/

Cité par Sources :