Travelling Waves in Partially Degenerate Reaction-Diffusion Systems
Mathematical modelling of natural phenomena, Tome 2 (2007) no. 2, pp. 106-125
Voir la notice de l'article provenant de la source EDP Sciences
We study the existence and some properties of travelling waves in partially degenerate reaction-diffusion systems. Such systems may for example describe intracellular calcium dynamics in the presence of immobile buffers. In order to prove the wave existence, we first consider the non degenerate case and then pass to the limit as some of the diffusion coefficient converge to zero. The passage to the limit is based on a priori estimates of solutions independent of the values of the diffusion coefficients. The wave uniqueness is also proved.
@article{10_1051_mmnp:2008021,
author = {B. Kazmierczak and V. Volpert},
title = {Travelling {Waves} in {Partially} {Degenerate} {Reaction-Diffusion} {Systems}},
journal = {Mathematical modelling of natural phenomena},
pages = {106--125},
publisher = {mathdoc},
volume = {2},
number = {2},
year = {2007},
doi = {10.1051/mmnp:2008021},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008021/}
}
TY - JOUR AU - B. Kazmierczak AU - V. Volpert TI - Travelling Waves in Partially Degenerate Reaction-Diffusion Systems JO - Mathematical modelling of natural phenomena PY - 2007 SP - 106 EP - 125 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008021/ DO - 10.1051/mmnp:2008021 LA - en ID - 10_1051_mmnp:2008021 ER -
%0 Journal Article %A B. Kazmierczak %A V. Volpert %T Travelling Waves in Partially Degenerate Reaction-Diffusion Systems %J Mathematical modelling of natural phenomena %D 2007 %P 106-125 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008021/ %R 10.1051/mmnp:2008021 %G en %F 10_1051_mmnp:2008021
B. Kazmierczak; V. Volpert. Travelling Waves in Partially Degenerate Reaction-Diffusion Systems. Mathematical modelling of natural phenomena, Tome 2 (2007) no. 2, pp. 106-125. doi: 10.1051/mmnp:2008021
Cité par Sources :