Epidemiological Models and Lyapunov Functions
Mathematical modelling of natural phenomena, Tome 2 (2007) no. 1, pp. 62-83.

Voir la notice de l'article provenant de la source EDP Sciences

We give a survey of results on global stability for deterministic compartmental epidemiological models. Using Lyapunov techniques we revisit a classical result, and give a simple proof. By the same methods we also give a new result on differential susceptibility and infectivity models with mass action and an arbitrary number of compartments. These models encompass the so-called differential infectivity and staged progression models. In the two cases we prove that if the basic reproduction ratio ≤ 1, then the disease free equilibrium is globally asymptotically stable. If > 1, there exists an unique endemic equilibrium which is asymptotically stable on the positive orthant.
DOI : 10.1051/mmnp:2008011

A. Fall 1, 2 ; A. Iggidr 1 ; G. Sallet 1 ; J. J. Tewa 1, 3

1 INRIA Lorraine & Université Paul Verlaine, Metz LMAM (UMR CNRS 7122) I.S.G.M.P. Bât A, Ile du Saulcy, 57045 Metz Cedex 01, France
2 Université de Saint-Louis, Sénégal
3 Université de Yaoundé, Cameroun
@article{MMNP_2007_2_1_a3,
     author = {A. Fall and A. Iggidr and G. Sallet and J. J. Tewa},
     title = {Epidemiological {Models} and {Lyapunov} {Functions}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {62--83},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2007},
     doi = {10.1051/mmnp:2008011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008011/}
}
TY  - JOUR
AU  - A. Fall
AU  - A. Iggidr
AU  - G. Sallet
AU  - J. J. Tewa
TI  - Epidemiological Models and Lyapunov Functions
JO  - Mathematical modelling of natural phenomena
PY  - 2007
SP  - 62
EP  - 83
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008011/
DO  - 10.1051/mmnp:2008011
LA  - en
ID  - MMNP_2007_2_1_a3
ER  - 
%0 Journal Article
%A A. Fall
%A A. Iggidr
%A G. Sallet
%A J. J. Tewa
%T Epidemiological Models and Lyapunov Functions
%J Mathematical modelling of natural phenomena
%D 2007
%P 62-83
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008011/
%R 10.1051/mmnp:2008011
%G en
%F MMNP_2007_2_1_a3
A. Fall; A. Iggidr; G. Sallet; J. J. Tewa. Epidemiological Models and Lyapunov Functions. Mathematical modelling of natural phenomena, Tome 2 (2007) no. 1, pp. 62-83. doi : 10.1051/mmnp:2008011. http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008011/

Cité par Sources :