Epidemiological Models and Lyapunov Functions
Mathematical modelling of natural phenomena, Tome 2 (2007) no. 1, pp. 62-83
Voir la notice de l'article provenant de la source EDP Sciences
We give a survey of results on global stability for deterministic compartmental epidemiological models. Using Lyapunov techniques we revisit a classical result, and give a simple proof. By the same methods we also give a new result on differential susceptibility and infectivity models with mass action and an arbitrary number of compartments. These models encompass the so-called differential infectivity and staged progression models. In the two cases we prove that if the basic reproduction ratio ≤ 1, then the disease free equilibrium is globally asymptotically stable. If > 1, there exists an unique endemic equilibrium which is asymptotically stable on the positive orthant.
Affiliations des auteurs :
A. Fall 1, 2 ; A. Iggidr 1 ; G. Sallet 1 ; J. J. Tewa 1, 3
@article{10_1051_mmnp:2008011,
author = {A. Fall and A. Iggidr and G. Sallet and J. J. Tewa},
title = {Epidemiological {Models} and {Lyapunov} {Functions}},
journal = {Mathematical modelling of natural phenomena},
pages = {62--83},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {2007},
doi = {10.1051/mmnp:2008011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008011/}
}
TY - JOUR AU - A. Fall AU - A. Iggidr AU - G. Sallet AU - J. J. Tewa TI - Epidemiological Models and Lyapunov Functions JO - Mathematical modelling of natural phenomena PY - 2007 SP - 62 EP - 83 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008011/ DO - 10.1051/mmnp:2008011 LA - en ID - 10_1051_mmnp:2008011 ER -
%0 Journal Article %A A. Fall %A A. Iggidr %A G. Sallet %A J. J. Tewa %T Epidemiological Models and Lyapunov Functions %J Mathematical modelling of natural phenomena %D 2007 %P 62-83 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008011/ %R 10.1051/mmnp:2008011 %G en %F 10_1051_mmnp:2008011
A. Fall; A. Iggidr; G. Sallet; J. J. Tewa. Epidemiological Models and Lyapunov Functions. Mathematical modelling of natural phenomena, Tome 2 (2007) no. 1, pp. 62-83. doi: 10.1051/mmnp:2008011
Cité par Sources :