Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel
Mathematical modelling of natural phenomena, Tome 2 (2007) no. 1, pp. 44-61.

Voir la notice de l'article provenant de la source EDP Sciences

The aim of this paper is to study the steady states of the mathematical models with delay kernels which describe pathogen-immune dynamics of infectious diseases. In the study of mathematical models of infectious diseases it is important to predict whether the infection disappears or the pathogens persist. The delay kernel is described by the memory function that reflects the influence of the past density of pathogen in the blood and it is given by a nonnegative bounded and normated function k defined on [ 0, ∞ ). By using the coefficient of the kernel k, as a bifurcationparameter, the models are found to undergo a sequence of Hopf bifurcation. The direction and the stability criteria of bifurcation periodic solutions are obtained by applying the normal form theory and the center manifold theorems. Some numerical simulation examples for justifying the theoretical results are also given.
DOI : 10.1051/mmnp:2008010

M. Neamţu 1 ; L. Buliga 2 ; F. R. Horhat 3 ; D. Opriş 2

1 Department of Economic Informatics, Mathematics and Statistics, Faculty of Economics West University of Timişoara, str. Pestalozzi, nr. 16A, 300115, Timişoara, Romania
2 Department of Applied Mathematics, Faculty of Mathematics, West University of Timişoara Bd. V. Parvan, nr. 4, 300223, Timişoara, Romania
3 Department of Biophysics and Medical Informatics, University of Medicine and Pharmacy Piata Eftimie Murgu, nr. 3, 300041, Timişoara, Romania
@article{MMNP_2007_2_1_a2,
     author = {M. Neam\c{t}u and L. Buliga and F. R. Horhat and D. Opri\c{s}},
     title = {Hopf {Bifurcation} {Analysis} of {Pathogen-Immune} {Interaction} {Dynamics} {With} {Delay} {Kernel}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {44--61},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2007},
     doi = {10.1051/mmnp:2008010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008010/}
}
TY  - JOUR
AU  - M. Neamţu
AU  - L. Buliga
AU  - F. R. Horhat
AU  - D. Opriş
TI  - Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel
JO  - Mathematical modelling of natural phenomena
PY  - 2007
SP  - 44
EP  - 61
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008010/
DO  - 10.1051/mmnp:2008010
LA  - en
ID  - MMNP_2007_2_1_a2
ER  - 
%0 Journal Article
%A M. Neamţu
%A L. Buliga
%A F. R. Horhat
%A D. Opriş
%T Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel
%J Mathematical modelling of natural phenomena
%D 2007
%P 44-61
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008010/
%R 10.1051/mmnp:2008010
%G en
%F MMNP_2007_2_1_a2
M. Neamţu; L. Buliga; F. R. Horhat; D. Opriş. Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel. Mathematical modelling of natural phenomena, Tome 2 (2007) no. 1, pp. 44-61. doi : 10.1051/mmnp:2008010. http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008010/

Cité par Sources :