Bifurcation Thresholds in an SIR Model with Information-Dependent Vaccination
Mathematical modelling of natural phenomena, Tome 2 (2007) no. 1, pp. 26-43.

Voir la notice de l'article provenant de la source EDP Sciences

Simple epidemiological models with information dependent vaccination functions can generate sustained oscillations via Hopf bifurcation of the endemic state. The onset of these oscillations depend on the shape of the vaccination function. A “global” approach is used to characterize the instability condition and identify classes of functions that always lead to stability/instability. The analysis allows the identification of an analytically determined “threshold vaccination function” having a simple interpretation: coverage functions lying always above the threshold always lead to oscillations, whereas coverage functions always below never lead to instability.
DOI : 10.1051/mmnp:2008009

A. d'Onofrio 1 ; P. Manfredi 2 ; P. Manfredi 3

1 Division of Epidemiology and Biostatistics, European Institute of Oncology Via Ripamonti 435, 20141 Milano, Italy
2 Dipartimento di Statistica e Matematica Applicata all' Economia, Università di Pisa Via Ridolfi 10, 5612 Pisa, Italy
3 Dipartimento di Scienze Economiche e Metodi Quantitativi, Università del Piemonte Orientale “A. Avogadro”, Via Perrone 18, 28100 Novara, Italy
@article{MMNP_2007_2_1_a1,
     author = {A. d'Onofrio and P. Manfredi and P. Manfredi},
     title = {Bifurcation {Thresholds} in an {SIR} {Model} with {Information-Dependent} {Vaccination}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {26--43},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2007},
     doi = {10.1051/mmnp:2008009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008009/}
}
TY  - JOUR
AU  - A. d'Onofrio
AU  - P. Manfredi
AU  - P. Manfredi
TI  - Bifurcation Thresholds in an SIR Model with Information-Dependent Vaccination
JO  - Mathematical modelling of natural phenomena
PY  - 2007
SP  - 26
EP  - 43
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008009/
DO  - 10.1051/mmnp:2008009
LA  - en
ID  - MMNP_2007_2_1_a1
ER  - 
%0 Journal Article
%A A. d'Onofrio
%A P. Manfredi
%A P. Manfredi
%T Bifurcation Thresholds in an SIR Model with Information-Dependent Vaccination
%J Mathematical modelling of natural phenomena
%D 2007
%P 26-43
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008009/
%R 10.1051/mmnp:2008009
%G en
%F MMNP_2007_2_1_a1
A. d'Onofrio; P. Manfredi; P. Manfredi. Bifurcation Thresholds in an SIR Model with Information-Dependent Vaccination. Mathematical modelling of natural phenomena, Tome 2 (2007) no. 1, pp. 26-43. doi : 10.1051/mmnp:2008009. http://geodesic.mathdoc.fr/articles/10.1051/mmnp:2008009/

Cité par Sources :