Voir la notice de l'article provenant de la source EDP Sciences
G. Frasca-Caccia 1 ; C. Valentino 2 ; F. Colace 2 ; D. Conte 1
@article{MMNP_2023_18_a12, author = {G. Frasca-Caccia and C. Valentino and F. Colace and D. Conte}, title = {An overview of differential models for corrosion of cultural heritage artefacts}, journal = {Mathematical modelling of natural phenomena}, eid = {27}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023031}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023031/} }
TY - JOUR AU - G. Frasca-Caccia AU - C. Valentino AU - F. Colace AU - D. Conte TI - An overview of differential models for corrosion of cultural heritage artefacts JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023031/ DO - 10.1051/mmnp/2023031 LA - en ID - MMNP_2023_18_a12 ER -
%0 Journal Article %A G. Frasca-Caccia %A C. Valentino %A F. Colace %A D. Conte %T An overview of differential models for corrosion of cultural heritage artefacts %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023031/ %R 10.1051/mmnp/2023031 %G en %F MMNP_2023_18_a12
G. Frasca-Caccia; C. Valentino; F. Colace; D. Conte. An overview of differential models for corrosion of cultural heritage artefacts. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 27. doi : 10.1051/mmnp/2023031. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023031/
[1] Chloride penetration in nonsaturated concrete J. Mater. Civ. Eng. 2003 183 191
, ,[2] Mercury intrusion porosimetry and image analysis of cement-based materials J. Colloid Interface Sci. 1999 39 44
, ,[3] Phase field modeling of V2O5 hot corrosion kinetics in thermal barrier coatings Comput. Mater. Sci. 2015 105 116
, ,[4] Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control. Elsevier (2006).
[5] A mathematical model of sulphite chemical aggression of limestones with high permeability. I. Modeling and qualitative analysis Transp. Porous Media 2007 109 122
, , ,[6] A mathematical model of sulphite chemical aggression of limestones with high permeability. II. Numerical approximation Transp. Porous Media 2007 175 188
, , ,[7] Global existence for a 1D parabolic-elliptic model for chemical aggression in permeable materials Nonlinear Anal. Real World Appl. 2015 1 12
, ,[8] A mathematical model for the sulphur dioxide aggression to calcium carbonate stones: numerical approximation and asymptotic analysis SIAM J. Appl. Math. 2004 1636 1667
, ,[9] Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection Struct. Health Monit. 2018 1110 1128
,[10] A simple method for measuring porosity in rocks Proc. Indian Acad. Sci. A 1960 265 269
,[11] Polynomial chaos expansion for lifetime assessment and sensitivity analysis of reinforced concrete structures subjected to chloride ingress and climate change Struct. Concr. 2020 1396 1407
, , ,[12] Corrosion modelling of iron based alloy in nuclear waste repository Electrochim. Acta 2010 4451 4467
, , , , , , , ,[13] Numerical methods for the simulation of a corrosion model with moving oxide layer J. Comput. Phys. 2012 6213 6231
, , , , ,[14] A nonlinear model for marble sulphation including surface rugosity: theoretical and numerical results Commun. Pure Appl. Anal. 2019 977 998
, , , ,[15] E. Bonetti, C. Cavaterra, F. Freddi, M. Grasselli and R. Natalini, Chemomechanical degradation of monumental stones: preliminary Results, in Mathematical Modeling in Cultural Heritage, Vol. 41 of Springer INdAM Series. Springer, Cham (2021) 59–72.
[16] Line integral solution of Hamiltonian PDEs Mathematics 2019 275
, ,[17] L. Brugnano and F. Iavernaro, Line Integral Methods for Conservative Problems, Vol. 13. CRC Press (2016).
[18] Origin and growth mechanisms of the sulfated crusts on urban limestone Water Air Soil Pollut. 1983 351 359
, ,[19] Exponentially fitted imex methods for advection–diffusion problems J. Comput. Appl. Math. 2017 100 108
, ,[20] Context-aware recommender systems and cultural heritage: a survey J. Ambient Intell. Humaniz. Comput. 2021 3109 3127
, , , , ,[21] A content-based recommender system for hidden cultural heritage sites enhancing Lect. Notes Netw. Syst. 2022 97 109
, , , , ,[22] M. Casillo, M. De Santo, M. Lombardi, R. Mosca, D. Santaniello and C. Valentino, Recommender systems and digital storytelling to enhance tourism experience in cultural heritage sites, in Proceedings – 2021 IEEE International Conference on Smart Computing, SMARTCOMP 2021 (2021) 323–328.
[23] Well-balanced high-order finite volume methods for systems of balance laws J. Sci. Comput. 2020 1 48
,[24] Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method J. Comput. Phys. 2012 6770 6789
, , , , , ,[25] Convergence of a finite volume scheme for a corrosion model Int. J. Finite 2015 27
, ,[26] On the existence of solutions for a drift-diffusion system arising in corrosion modeling Discrete Contin. Dyn. Syst. Ser. B 2015 77 92
,[27] Semi-discrete finite difference multiscale scheme for a concrete corrosion model: a priori estimates and convergence Jpn. J. Ind. Appl. Math. 2012 289 316
,[28] Positivity-preserving nonstandard finite difference schemes for cross-diffusion equations in biosciences Comput. Math. with Appl. 2014 1071 1082
, ,[29] A. Chianese and F. Piccialli, Designing a smart museum: When cultural heritage joins IoT, in Proceedings – 2014 8th International Conference on Next Generation Mobile Applications, Services and Technologies, NGMAST 2014 (2014), 300–306.
[30] Mathematical model of copper corrosion Appl. Math. Model. 2014 4804 4816
, ,[31] Mathematics and monument conservation: free boundary models of marble sulfation SIAM J. Appl. Math. 2008 149 168
, ,[32] A. Coco, M. Donatelli, M. Semplice and S. Serra-Capizzano, Numerical simulations of marble sulfation, in Mathematical Modeling in Cultural Heritage, Vol. 41 of Springer INdAM Series. Springer, Cham (2021) 107–122.
[33] A level-set multigrid technique for nonlinear diffusion in the numerical simulation of marble degradation under chemical pollutants Appl. Math. Comput. 2020 125503
, ,[34] F. Colace, C. Elia, C.G. Guida, A. Lorusso, F. Marongiu and D. Santaniello, An IOT-based framework to protect cultural heritage buildings, in Proceedings – 2021 IEEE International Conference on Smart Computing, SMARTCOMP 2021 (2021) 377–382.
[35] Diffuse interface model of diffusion-limited crystal growth Phys. Rev. B Condens. Matter 1985 6119 6122
,[36] V. Comite and P. Fermo, The damage induced by atmospheric pollution on stone surfaces: the chemical characterization of black crusts, in Mathematical Modeling in Cultural Heritage, Vol. 41 of Springer INdAM Series. Springer, Cham (2021) 123–134.
[37] Regularized exponentially fitted methods for oscillatory problems J. Phys. Conf. Ser. 2020 012013
, , ,[38] A MATLAB code for the computational solution of a phase field model for pitting corrosion Dolomites Res. Notes Approx. 2022 47 65
,[39] Exponentially fitted methods with a local energy conservation law Adv. Comput. Math. 2023 49
,[40] On the advantages of nonstandard finite difference discretizations for differential problems Numer. Anal. Appl. 2022 219 235
, , ,[41] Positivity-preserving and elementary stable nonstandard method for a COVID-19 SIR model Dolomites Res. Notes Approx. 2022 65 77
, , ,[42] Exponentially fitted two-step peer methods for oscillatory problems Comput. Appl. Math. 2020 1 19
, , ,[43] S. Cuomo, P. De Michele, A. Galletti and F. Piccialli, A cultural heritage case study of visitor experiences shared on a social network. in Proceedings - 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2015, (2015) 539–544.
[44] Iot-based collaborative reputation system for associating visitors and artworks in a cultural scenario Expert Syst. Appl. 2017 101 111
, , , ,[45] Estimation of effects of air pollution on the corrosion of historical buildings in Bangkok Environ. Nat. Resour. J. 2022 505 514
, , , , ,[46] Exponentially fitted singly diagonally implicit Runge–Kutta methods J. Comput. Appl. Math. 2014 277 287
,[47] Estimating porosity of sedimentary rocks from bulk density J. Geol. 1954 102 107
[48] A. Di Filippo, M. Lombardi, F. Marongiu, A. Lorusso and D. Santaniello, Generative design for project optimization, in Proceedings – DMSVIVA 2021: 27th International DMS Conference on Visualization and Visual Languages (2021) 110–115.
[49] AMG preconditioning for nonlinear degenerate parabolic equations on nonuniform grids with application to monument degradation Appl. Numer. Math. 2013 1 18
, ,[50] Pit growth studies in stainless steel foils. I. introduction and pit growth kinetics Corros. Sci. 2002 927 941
,[51] Homogenization of a reaction-diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains J. Eng. Math. 2011 261 276
, , ,[52] Stability of ancient masonry towers: Moisture diffusion, carbonation and size effect Cem. Concr. Res. 2006 1379 1388
,[53] G.J. Fix, Phase field methods for free boundary problems, in Free Boundary Problems: Theory and Applications. Pitman (Advanced Publishing Program). Boston, Mass.-London (1983) 580.
[54] Locally conservative finite difference schemes for the modified KdV equation J. Comput. Dyn. 2019 307 323
,[55] Simple bespoke preservation of two conservation laws IMA J. Numer. Anal. 2020 1294 1329
,[56] A new technique for preserving conservation laws Found. Comput. Math. 2021 477 506
,[57] Numerical preservation of multiple local conservation laws Appl. Math. Comput. 2021 126203
,[58] An efficient second-order linear scheme for the phase field model of corrosive dissolution J. Comput. Appl. Math. 2020 112472
, , ,[59] A space-time adaptive finite element method with exponential time integrator for the phase field model of pitting corrosion J. Comput. Phys. 2020 109191
, , ,[60] A non-linear model of sulphation of porous stones: numerical simulations and preliminary laboratory assessments J. Cult. Herit. 2008 14 22
, , ,[61] Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones Nonlinear Anal. Real World Appl. 2005 477 494
,[62] Nonlinear transmission problems for quasilinear diffusion systems Netw. Heterog. Media 2007 359 381
,[63] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration, Vol. 31 of Springer Series in Computational Mathematics, 2nd ed. Springer-Verlag, Berlin (2006).
[64] Porosities of building limestones: using the solid density to assess data quality Mater. Struct. 2016 3969 3979
,[65] R. Hamilton and H. Crabbe, Environment, pollution and effects, In The Effects of Air Pollution on Cultural Heritage. Springer (2009) 1–27.
[66] Prediction of corrosion-fatigue behavior of dp steel through artificial neural network Int. J. Fatigue 2001 1 4
,[67] Solvability for a drift-diffusion system with Robin boundary conditions J. Differ. Equ. 2019 2331 2356
, ,[68] The fast reaction limit for a reaction-diffusion system J. Math. Anal. Appl. 1996 349 373
, ,[69] Image processing-based pitting corrosion detection using metaheuristic optimized multilevel image thresholding and machine-learning approaches Math. Probl. Eng. 2020 6765274
[70] Image processing-based detection of pipe corrosion using texture analysis and metaheuristic- optimized machine learning approach Comput. Intell. Neurosci. 2019 6765274
,[71] L. Gr Ixaru and G. Vanden Berghe. Exponential Fitting, Vol. 568. Springer Science Business Media (2004).
[72] Recurrent precipitation and liesegang rings J. Chem. Phys. 1981 5000 5007
,[73] Phase-field model for binary alloys Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 1999 7186 7197
, ,[74] Kinetics of reaction of so2 with marble J. Mater. Civ. Eng. 1989 60 72
, ,[75] J.S. Langer, Models of pattern formation in first-order phase transitions, in Directions in Condensed Matter Physics, Vol. 1 of World Sci. Ser. Dir. Condensed Matter Phys.. World Sci. Publishing, Singapore (1986) 165–186.
[76] T. Li and H.-H. Huang, Probabilistic quantitative analysis on the contents of sulfate corrosion products in concrete. Constr. Build. Mater. 275 (2021).
[77] L. Liu, E. Tan, Y. Zhen, X.J. Yin and Z.Q. Cai, AI-facilitated coating corrosion assessment system for productivity Enhancement, in Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, ICIEA 2018 (2018) 606–610.
[78] A phase field model for simulating the pitting corrosion Corros. Sci. 2016 157 166
, ,[79] Discrete gradient methods have an energy conservation law Discrete Contin. Dyn. Syst. 2013 1099 1104
,[80] Coupled hygrothermal, electrochemical, and mechanical modelling for deterioration prediction in reinforced cementitious materials Coupled Problems in Science and Engineering 2017 345 356
, , ,[81] Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition Numer. Methods Partial Differ. Equ. 2007 672 691
[82] A. Muntean, Multiscale carbonation reactions: status of things and two modeling exercises related to cultural heritage, in INdAM Workshop: Mathematical modeling and Analysis of Degradation and Restoration in CULTURAL HERITAGE (2021) 175–185.
[83] Algorithm 919: a Krylov subspace algorithm for evaluating the φ-functions appearing in exponential integrators ACM Trans. Math. Softw. 2012 1 19
,[84] Time-dependent cyclic behavior of reinforced concrete bridge columns under chlorides-induced corrosion and rebars buckling Struct. Concr. 2019 81 103
, , , , , , , ,[85] A new class of energy-preserving numerical integration methods J. Phys. A. 2008 045206
,[86] A mathematical, experimental study on iron rings formation in porous stones J. Cult. Herit. 2019 158 166
, , , , , , ,[87] P. Roberge, Corrosion engineering. McGraw-Hill Education, 2008.
[88] Smartmuseum: a mobile recommender system for the web of data Web Semant. 2013 50 67
, , , , , , , ,[89] G. Russo and A. Khe, High order well balanced schemes for systems of balance laws, in Hyperbolic Problems: Theory, Numerics and Applications, Vol. 67 of Proc. Sympos. Appl. Math. Am. Math. Soc., Providence, RI (2009) 919–928.
[90] The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials Cem. Concr. Res. 1993 761 772
, ,[91] 2D model for carbonation and moisture/heat flow in porous materials Cem. Concr. Res. 1995 1703 1712
, ,[92] Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures part i: Theoretical formulation Cem. Concr. Res. 2004 571 579
,[93] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian problems, Vol. 7 of Applied Mathematics and Mathematical Computation. Chapman Hall, London (1994).
[94] Preconditioned implicit solvers for nonlinear PDEs in monument conservation SIAM J. Sci. Comput. 2010 3071 3091
[95] L.F. Shampine, Numerical Solution of Ordinary Differential Equations. Chapman Hall, New York (1994).
[96] Expokit: a software package for computing matrix exponentials ACM Trans. Math. Softw. 1998 130 156
[97] Mechanism of sulphation by atmospheric SO2 of the limestones and marbles of the ancient monuments and statues: II. Hypothesis concerning the rate determining step in the process of sulphation, and its experimental confirmation Br. Corros. J. 1981 70 77
,[98] Mechanism of sulphation by atmospheric SO2 of the limestones and marbles of the ancient monuments and statues. I. Observations in situ (acropolis) and laboratory measurements Br. Corros. J. 1981 63 69
,[99] Modeling carbonation for corrosion risk prediction of concrete structures Cem. Concr. Res. 2002 935 941
, ,[100] Automated mapping of cultural heritage in Norway from airborne lidar data using faster r-cnn Int. J. Appl. Earth Obs. Geoinf. 2021 102241
, ,[101] Numerical study on diffusion of chloride and induced rebar corrosion by two-dimensional multiscale approach Model. Simul. Eng. 2018 1 20
, , ,[102] Carbonation reaction of lime, kinetics at ambient temperature Cem. Concr. Res. 2005 647 657
[103] Modelling lime mortar carbonation Mater. Struct. 1994 393 398
,[104] A.J. Vromans, A. Muntean and F. van de Ven, A mixture theory-based concrete corrosion model coupling chemical reactions, diffusion and mechanics. Pac. J. Math. Ind. 10 (2018) Art. 5.
[105] Faraday and his laws of electrolysis: An appreciation Bull. Electrochem. 1992 481 484
[106] The multiplier method to construct conservative finite difference schemes for ordinary and partial differential equations SIAM J. Numer. Anal. 2016 86 119
, ,[107] Analytical solutions of moisture-chloride ion coupled transport in unsaturated concrete J. Am. Ceram. Soc. 2021 5883 5897
, ,[108] Recommendations based on semantically enriched museum collections Web Semant. 2008 283 290
, , , , ,[109] Weathering rates of marble in laboratory and outdoor conditions Int. J. Environ. Eng. 1996 856 863
, , , , ,[110] A survey of computational efforts in the field of corrosion engineering Int. J. Numer. Methods Eng. 1986 1295 1311
, ,Cité par Sources :