Moncef Aouadi  1 ; Souad Guerine  2
@article{10_1051_mmnp_2023002,
author = {Moncef Aouadi and Souad Guerine},
title = {Decay in full von {K\'arm\'an} beam with temperature and microtemperatures effects},
journal = {Mathematical modelling of natural phenomena},
eid = {3},
year = {2023},
volume = {18},
doi = {10.1051/mmnp/2023002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/}
}
TY - JOUR AU - Moncef Aouadi AU - Souad Guerine TI - Decay in full von Kármán beam with temperature and microtemperatures effects JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/ DO - 10.1051/mmnp/2023002 LA - en ID - 10_1051_mmnp_2023002 ER -
%0 Journal Article %A Moncef Aouadi %A Souad Guerine %T Decay in full von Kármán beam with temperature and microtemperatures effects %J Mathematical modelling of natural phenomena %D 2023 %V 18 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/ %R 10.1051/mmnp/2023002 %G en %F 10_1051_mmnp_2023002
Moncef Aouadi; Souad Guerine. Decay in full von Kármán beam with temperature and microtemperatures effects. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 3. doi: 10.1051/mmnp/2023002
[1] Asymptotic behavior in nonlocal Mindlin’s strain gradient thermoelasticity with voids and microtemperatures J. Math. Anal. Appl. 2022 126268
[2] , , Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III Proc. R. Soc. 2020 20200459
[3] , , Analyticity of solutions to thermo-elastic-plastic flow problem with microtemperatures Z. Angew. Math. Mech. 2021 11
[4] On the stability of porous-elastic system with microtemparatures J. Therm. Stress. 2019 265 278
[5] V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Vol. 190 of Springer Monographs in Mathematics. Springer, New York (2010)
[6] , Exponential stability of a von Karman model with thermal effects Elect. J. Differ. Equ. 1998 1 13
[7] A. Benabdallah, Modelling of von Karman system with thermal effects. Prépublications de l’équipe de mathématiques de Besançon no 99/05, 1999.
[8] , Exponential decay rates for a full von Karman system of dynamic thermoelasticity J. Differ. Equ. 2000 51 93
[9] , Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping and distributed delay J. Math. Phys. 2019 041506
[10] , I. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation Differ. Integral Equ. 1996 267 294
[11] , Exponential stability in thermoelasticity with microtemperatures Int. J. Eng. Sci. 2005 33
[12] On the propagation of thermoelastic disturbances in thin plates and rods J. Mech. Phys. Solids 1962 99 109
[13] , Well posedness and stability result for a microtemperature full von Kármán beam with inflnite-memory and distributed delay terms Math. Meth. Appl. Sci. 2022 6411 6434
[14] , , On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation Commun. Partial. Differ. Equ. 2002 1901 1951
[15] , Exponential stabilization of the full von Kármáan beam by a thermal effect and a frictional damping Georgian Math. J. 2013 427 438
[16] , , , , Long-time dynamics of a nonlinear Timoshenko beam with discrete delay term and nonlinear damping J. Math. Phys. 2020 061505
[17] , On the stabilization of linear porous elastic materials by microtemperature effect and porous damping Ann. Univ. Ferrara. 2020 13 25
[18] D.E. Carlson, Linear thermoelasticity, in: Handbuch der Physik, Band VIa/2, Springer-Verlag, Berlin (1972), pp. 297–345.
[19] , Modeling and steady state analysis of the extensible thermoelastic beam Math. Comput. Model. 2011 896 908
[20] Thermodynamics of a continuum with microstructure Int. J. Eng. Sci. 1969 801
[21] , , Well-posedness and exponential stability for the von Kàrmàn systems with second sound Eur. J. Math. Comp. Appl. 2019 52 65
[22] , Global stabilization of a dynamic von Karman plate with nonlinear boundary feedback Appl. Math. Optim. 1995 57 84
[23] , On a theory of thermoelasticity with microtemperatures J. Therm. Stress. 2000 199 215
[24] , On thermoelastic bodies with inner structure and microtemperatures J. Math. Anal. Appl. 2009 12 23
[25] , Qualitative properties in strain gradient thermoelasticity with microtemperatures Math. Mech. Solids 2018 240 258
[26] Exponential stability for a thermoelastic porous system with microtemperatures effects Acta. Appl. Math. 2021 1 14
[27] , Uniform stabilization of a nonlinear beam by nonlinear boundary feedback J. Diff. Eq. 1991 355 388
[28] J.E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA (1989).
[29] , , Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions Discr. Cont. Dyn. Syst. 2018 1037 1072
[30] L. Lin, Q. Pei, J. Xu and H. Guo, A microfabricated temperature sensor for hyperthermia, in Proc. 5th IEEE Int. Conf. Nano/Micro Eng. Mol. Syst. (NEMS), Xiamen, China, IEEE (2010), pp. 578–581.
[31] , , Asymptotic stability for a nonautonomous full von Kármán beam with thermo-viscoelastic damping Appl. Anal. 2018 400 414
[32] , , Existence and general decay for the full von Kaarmaan beam with a thermo-viscoelastic damping, frictional dampings and a delay term IMA J. Math. Cont. Inf. 2017 521 542
[33] , , Analyticity in porous-thermoelasticity with microtemperatures J. Math. Anal. Appl. 2012 645 655
[34] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).
[35] , , On the stability of linear porous elastic materials with microtemperatures effects and frictional damping Appl. Anal. 2022 2922 2936
[36] , On the stability of linear porous elastic materials with microtemperatures effects J. Therm. Stress. 2020 1300 1315
[37] Thermoelasticity of the bodies with microstructure Arch. Mech. Stos. 1967 335
[38] , , , Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications J. Micro. Syst. 2014 21 29
Cité par Sources :