Decay in full von Kármán beam with temperature and microtemperatures effects
Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 3.

Voir la notice de l'article provenant de la source EDP Sciences

In this article we derive the equations that constitute the mathematical model of the full von Kármán beam with temperature and microtemperatures effects. The nonlinear governing equations are derived by using Hamilton principle in the framework of Euler–Bernoulli beam theory. Under quite general assumptions on nonlinear damping function acting on the transversal component and based on nonlinear semigroups and the theory of monotone operators, we establish existence and uniqueness of weak and strong solutions to the derived problem. Then using the multiplier method, we show that solutions decay exponentially. Finally we consider the case of zero thermal conductivity and we show that the dissipation given only by the microtemperatures is strong enough to produce exponential stability.
DOI : 10.1051/mmnp/2023002

Moncef Aouadi 1 ; Souad Guerine 2

1 Université de Carthage, Ecole Nationale d’Ingénieurs de Bizerte, 7035, BP66, Tunisia UR Systèmes dynamiques et applications, UR 17ES21, Bizerte, Tunisia
2 Université de Carthage, Faculté des Sciences de Bizerte, Jarzouna 7021, Tunisia UR Systèmes dynamiques et applications, UR 17ES21, Bizerte, Tunisia
@article{MMNP_2023_18_a8,
     author = {Moncef Aouadi and Souad Guerine},
     title = {Decay in full von {K\'arm\'an} beam with temperature and microtemperatures effects},
     journal = {Mathematical modelling of natural phenomena},
     eid = {3},
     publisher = {mathdoc},
     volume = {18},
     year = {2023},
     doi = {10.1051/mmnp/2023002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/}
}
TY  - JOUR
AU  - Moncef Aouadi
AU  - Souad Guerine
TI  - Decay in full von Kármán beam with temperature and microtemperatures effects
JO  - Mathematical modelling of natural phenomena
PY  - 2023
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/
DO  - 10.1051/mmnp/2023002
LA  - en
ID  - MMNP_2023_18_a8
ER  - 
%0 Journal Article
%A Moncef Aouadi
%A Souad Guerine
%T Decay in full von Kármán beam with temperature and microtemperatures effects
%J Mathematical modelling of natural phenomena
%D 2023
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/
%R 10.1051/mmnp/2023002
%G en
%F MMNP_2023_18_a8
Moncef Aouadi; Souad Guerine. Decay in full von Kármán beam with temperature and microtemperatures effects. Mathematical modelling of natural phenomena, Tome 18 (2023), article  no. 3. doi : 10.1051/mmnp/2023002. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/

[1] M. Aouadi Asymptotic behavior in nonlocal Mindlin’s strain gradient thermoelasticity with voids and microtemperatures J. Math. Anal. Appl. 2022 126268

[2] M. Aouadi, F. Passarella, V. Tibullo Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III Proc. R. Soc. 2020 20200459

[3] M. Aouadi, M. Ben Bettaieb, F. Abed-Meraim Analyticity of solutions to thermo-elastic-plastic flow problem with microtemperatures Z. Angew. Math. Mech. 2021 11

[4] T.A. Apalara On the stability of porous-elastic system with microtemparatures J. Therm. Stress. 2019 265 278

[5] V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Vol. 190 of Springer Monographs in Mathematics. Springer, New York (2010)

[6] A. Benabdallah, D. Teniou Exponential stability of a von Karman model with thermal effects Elect. J. Differ. Equ. 1998 1 13

[7] A. Benabdallah, Modelling of von Karman system with thermal effects. Prépublications de l’équipe de mathématiques de Besançon no 99/05, 1999.

[8] A. Benabdallah, I. Lasiecka Exponential decay rates for a full von Karman system of dynamic thermoelasticity J. Differ. Equ. 2000 51 93

[9] L. Bouzettouta, A. Djebabla Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping and distributed delay J. Math. Phys. 2019 041506

[10] A. Favini, M.A. Horn I. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation Differ. Integral Equ. 1996 267 294

[11] P. Casas, R. Quintanilla Exponential stability in thermoelasticity with microtemperatures Int. J. Eng. Sci. 2005 33

[12] P. Chadwick On the propagation of thermoelastic disturbances in thin plates and rods J. Mech. Phys. Solids 1962 99 109

[13] A. Choucha, D. Ouchenane Well posedness and stability result for a microtemperature full von Kármán beam with inflnite-memory and distributed delay terms Math. Meth. Appl. Sci. 2022 6411 6434

[14] I. Chueshov, M. Eller, I. Lasiecka On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation Commun. Partial. Differ. Equ. 2002 1901 1951

[15] A. Djebabla, N.E. Tatar Exponential stabilization of the full von Kármáan beam by a thermal effect and a frictional damping Georgian Math. J. 2013 427 438

[16] M.J. Dos Santos, M.M. Freitas, A.J.A. Ramos, D.S. Almeida, L.R.S. Rodrigues Long-time dynamics of a nonlinear Timoshenko beam with discrete delay term and nonlinear damping J. Math. Phys. 2020 061505

[17] H. Dridi, A. Djebabla On the stabilization of linear porous elastic materials by microtemperature effect and porous damping Ann. Univ. Ferrara. 2020 13 25

[18] D.E. Carlson, Linear thermoelasticity, in: Handbuch der Physik, Band VIa/2, Springer-Verlag, Berlin (1972), pp. 297–345.

[19] C. Giorgi, M.G. Naso Modeling and steady state analysis of the extensible thermoelastic beam Math. Comput. Model. 2011 896 908

[20] R. Grot Thermodynamics of a continuum with microstructure Int. J. Eng. Sci. 1969 801

[21] D. Hanni, A. Djebablaa, N.E. Tatar Well-posedness and exponential stability for the von Kàrmàn systems with second sound Eur. J. Math. Comp. Appl. 2019 52 65

[22] M.A. Horn, I. Lasiecka Global stabilization of a dynamic von Karman plate with nonlinear boundary feedback Appl. Math. Optim. 1995 57 84

[23] D. Iesan, R. Quintanilla On a theory of thermoelasticity with microtemperatures J. Therm. Stress. 2000 199 215

[24] D. Iesan, R. Quintanilla On thermoelastic bodies with inner structure and microtemperatures J. Math. Anal. Appl. 2009 12 23

[25] D. Iesan, R. Quintanilla Qualitative properties in strain gradient thermoelasticity with microtemperatures Math. Mech. Solids 2018 240 258

[26] H.E. Khochemane Exponential stability for a thermoelastic porous system with microtemperatures effects Acta. Appl. Math. 2021 1 14

[27] J.E. Lagnese, G. Leugering Uniform stabilization of a nonlinear beam by nonlinear boundary feedback J. Diff. Eq. 1991 355 388

[28] J.E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA (1989).

[29] I. Lasiecka, T.F. Ma, R.N. Monteiro Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions Discr. Cont. Dyn. Syst. 2018 1037 1072

[30] L. Lin, Q. Pei, J. Xu and H. Guo, A microfabricated temperature sensor for hyperthermia, in Proc. 5th IEEE Int. Conf. Nano/Micro Eng. Mol. Syst. (NEMS), Xiamen, China, IEEE (2010), pp. 578–581.

[31] W. Liu, K. Chen, J. Yu Asymptotic stability for a nonautonomous full von Kármán beam with thermo-viscoelastic damping Appl. Anal. 2018 400 414

[32] W. Liu, K. Chen, J. Yu Existence and general decay for the full von Kaarmaan beam with a thermo-viscoelastic damping, frictional dampings and a delay term IMA J. Math. Cont. Inf. 2017 521 542

[33] P.X. Pamplona, J.E. Munoz Rivera, R. Quintanilla Analyticity in porous-thermoelasticity with microtemperatures J. Math. Anal. Appl. 2012 645 655

[34] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).

[35] M. Saci, H.E. Khochemane, A. Djebabla On the stability of linear porous elastic materials with microtemperatures effects and frictional damping Appl. Anal. 2022 2922 2936

[36] M. Saci, A. Djebabla On the stability of linear porous elastic materials with microtemperatures effects J. Therm. Stress. 2020 1300 1315

[37] Cz. Wozniak Thermoelasticity of the bodies with microstructure Arch. Mech. Stos. 1967 335

[38] Z. Yang, Y. Zhang, T. Itoh, R. Maeda Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications J. Micro. Syst. 2014 21 29

Cité par Sources :