Voir la notice de l'article provenant de la source EDP Sciences
Moncef Aouadi 1 ; Souad Guerine 2
@article{MMNP_2023_18_a8, author = {Moncef Aouadi and Souad Guerine}, title = {Decay in full von {K\'arm\'an} beam with temperature and microtemperatures effects}, journal = {Mathematical modelling of natural phenomena}, eid = {3}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023002}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/} }
TY - JOUR AU - Moncef Aouadi AU - Souad Guerine TI - Decay in full von Kármán beam with temperature and microtemperatures effects JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/ DO - 10.1051/mmnp/2023002 LA - en ID - MMNP_2023_18_a8 ER -
%0 Journal Article %A Moncef Aouadi %A Souad Guerine %T Decay in full von Kármán beam with temperature and microtemperatures effects %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/ %R 10.1051/mmnp/2023002 %G en %F MMNP_2023_18_a8
Moncef Aouadi; Souad Guerine. Decay in full von Kármán beam with temperature and microtemperatures effects. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 3. doi : 10.1051/mmnp/2023002. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023002/
[1] Asymptotic behavior in nonlocal Mindlin’s strain gradient thermoelasticity with voids and microtemperatures J. Math. Anal. Appl. 2022 126268
[2] Exponential stability in Mindlin’s Form II gradient thermoelasticity with microtemperatures of type III Proc. R. Soc. 2020 20200459
, ,[3] Analyticity of solutions to thermo-elastic-plastic flow problem with microtemperatures Z. Angew. Math. Mech. 2021 11
, ,[4] On the stability of porous-elastic system with microtemparatures J. Therm. Stress. 2019 265 278
[5] V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Vol. 190 of Springer Monographs in Mathematics. Springer, New York (2010)
[6] Exponential stability of a von Karman model with thermal effects Elect. J. Differ. Equ. 1998 1 13
,[7] A. Benabdallah, Modelling of von Karman system with thermal effects. Prépublications de l’équipe de mathématiques de Besançon no 99/05, 1999.
[8] Exponential decay rates for a full von Karman system of dynamic thermoelasticity J. Differ. Equ. 2000 51 93
,[9] Exponential stabilization of the full von Kármán beam by a thermal effect and a frictional damping and distributed delay J. Math. Phys. 2019 041506
,[10] I. Lasiecka and D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation Differ. Integral Equ. 1996 267 294
,[11] Exponential stability in thermoelasticity with microtemperatures Int. J. Eng. Sci. 2005 33
,[12] On the propagation of thermoelastic disturbances in thin plates and rods J. Mech. Phys. Solids 1962 99 109
[13] Well posedness and stability result for a microtemperature full von Kármán beam with inflnite-memory and distributed delay terms Math. Meth. Appl. Sci. 2022 6411 6434
,[14] On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation Commun. Partial. Differ. Equ. 2002 1901 1951
, ,[15] Exponential stabilization of the full von Kármáan beam by a thermal effect and a frictional damping Georgian Math. J. 2013 427 438
,[16] Long-time dynamics of a nonlinear Timoshenko beam with discrete delay term and nonlinear damping J. Math. Phys. 2020 061505
, , , ,[17] On the stabilization of linear porous elastic materials by microtemperature effect and porous damping Ann. Univ. Ferrara. 2020 13 25
,[18] D.E. Carlson, Linear thermoelasticity, in: Handbuch der Physik, Band VIa/2, Springer-Verlag, Berlin (1972), pp. 297–345.
[19] Modeling and steady state analysis of the extensible thermoelastic beam Math. Comput. Model. 2011 896 908
,[20] Thermodynamics of a continuum with microstructure Int. J. Eng. Sci. 1969 801
[21] Well-posedness and exponential stability for the von Kàrmàn systems with second sound Eur. J. Math. Comp. Appl. 2019 52 65
, ,[22] Global stabilization of a dynamic von Karman plate with nonlinear boundary feedback Appl. Math. Optim. 1995 57 84
,[23] On a theory of thermoelasticity with microtemperatures J. Therm. Stress. 2000 199 215
,[24] On thermoelastic bodies with inner structure and microtemperatures J. Math. Anal. Appl. 2009 12 23
,[25] Qualitative properties in strain gradient thermoelasticity with microtemperatures Math. Mech. Solids 2018 240 258
,[26] Exponential stability for a thermoelastic porous system with microtemperatures effects Acta. Appl. Math. 2021 1 14
[27] Uniform stabilization of a nonlinear beam by nonlinear boundary feedback J. Diff. Eq. 1991 355 388
,[28] J.E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA (1989).
[29] Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions Discr. Cont. Dyn. Syst. 2018 1037 1072
, ,[30] L. Lin, Q. Pei, J. Xu and H. Guo, A microfabricated temperature sensor for hyperthermia, in Proc. 5th IEEE Int. Conf. Nano/Micro Eng. Mol. Syst. (NEMS), Xiamen, China, IEEE (2010), pp. 578–581.
[31] Asymptotic stability for a nonautonomous full von Kármán beam with thermo-viscoelastic damping Appl. Anal. 2018 400 414
, ,[32] Existence and general decay for the full von Kaarmaan beam with a thermo-viscoelastic damping, frictional dampings and a delay term IMA J. Math. Cont. Inf. 2017 521 542
, ,[33] Analyticity in porous-thermoelasticity with microtemperatures J. Math. Anal. Appl. 2012 645 655
, ,[34] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).
[35] On the stability of linear porous elastic materials with microtemperatures effects and frictional damping Appl. Anal. 2022 2922 2936
, ,[36] On the stability of linear porous elastic materials with microtemperatures effects J. Therm. Stress. 2020 1300 1315
,[37] Thermoelasticity of the bodies with microstructure Arch. Mech. Stos. 1967 335
[38] Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications J. Micro. Syst. 2014 21 29
, , ,Cité par Sources :