Voir la notice de l'article provenant de la source EDP Sciences
Zhonghu Luo 1 ; Zijian Liu 1 ; Yuanshun Tan 1 ; Jin Yang 1 ; Huanhuan Qiu 1
@article{MMNP_2023_18_a16, author = {Zhonghu Luo and Zijian Liu and Yuanshun Tan and Jin Yang and Huanhuan Qiu}, title = {Threshold behavior of an age-structured tumor immune model}, journal = {Mathematical modelling of natural phenomena}, eid = {6}, publisher = {mathdoc}, volume = {18}, year = {2023}, doi = {10.1051/mmnp/2023001}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023001/} }
TY - JOUR AU - Zhonghu Luo AU - Zijian Liu AU - Yuanshun Tan AU - Jin Yang AU - Huanhuan Qiu TI - Threshold behavior of an age-structured tumor immune model JO - Mathematical modelling of natural phenomena PY - 2023 VL - 18 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023001/ DO - 10.1051/mmnp/2023001 LA - en ID - MMNP_2023_18_a16 ER -
%0 Journal Article %A Zhonghu Luo %A Zijian Liu %A Yuanshun Tan %A Jin Yang %A Huanhuan Qiu %T Threshold behavior of an age-structured tumor immune model %J Mathematical modelling of natural phenomena %D 2023 %V 18 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023001/ %R 10.1051/mmnp/2023001 %G en %F MMNP_2023_18_a16
Zhonghu Luo; Zijian Liu; Yuanshun Tan; Jin Yang; Huanhuan Qiu. Threshold behavior of an age-structured tumor immune model. Mathematical modelling of natural phenomena, Tome 18 (2023), article no. 6. doi : 10.1051/mmnp/2023001. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2023001/
[1] Necessary and sufficient conditions for asynchronous exponential growth in age structured cell populations with quiescence 1997 499 513
, ,[2] A mathematical model for analysis of the cell cycle in cell lines derived from human tumors 2003 295 312
, , , , , ,[3] Synchronisation and control of proliferation in cycling cell population models with age structure 2014 66 94
, , , , , ,[4] An age-and-cyclin-structured cell population model for healthy and tumoral tissues 2008 91 110
, , ,[5] The global stability of an SIRS model with infection age 2014 449 469
, ,[6] Modeling immunotherapy of the tumor C immune interaction 1998 235 252
,[7] Modeling cancer-immune responses to therapy 2014 461 478
, ,[8] Asynchronous exponential growth in an age structured population of proliferating and quiescent cells 2002 73 83
, ,[9] Dynamics of the tumor-immune system competition: the effect of time delay 2003 395 406
[10] The contribution of age structure to cell population responses to targeted therapeutics 2012 19 27
, , , ,[11] Exponentially modified Gaussian (EMG) relevance to distributions related to cell proliferation and differentiation 2010 257 266
[12] Age-size structure in populations with quiescence 1987 67 95
,[13] Persistence in infinite-dimensional systems 1989 388 395
,[14] Threshold and stability for an age-structured epidemic model 1989 411 434
[15] On a mathematical model of tumor-immune system interactions with an oncolytic virus therapy 2021 1559 1587
,[16] Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis 1994 295 321
, , ,[17] Analysis of a nonlinear age-structured tumor cell population model 2019 283 300
, , ,[18] Steady states analysis of a nonlinear age-structured tumor cell population model with quiescence and bidirectional transition 2020 455 474
, , ,[19] Modeling and analysis of a nonlinear age-structured model for tumor cell populations with quiescence 2018 1763 1791
, , , ,[20] Global attractors and steady states for uniformly persistent dynamical systems 2005 251 275
,[21] Mathematical model of tumor-immune surveillance 2016 312 330
, , ,[22] The solution and the stability of a nonlinear age-structured population model 2003 153 165
,[23] Immune surveillance: a balance between protumor and antitumor immunity 2008 11 18
[24] Local and global stabilities of a viral dynamics model with infection-age and immune response 2019 793 813
, , , ,[25] A validated mathematical model of cell-mediated immune response to tumor growth 2005 7950 7958
, ,[26] Nonlinear dynamics in tumor-immune system interaction models with delays 2021 541 602
[27] A delay differential equation model for tumor growth 2003 270 294
,[28] Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function 2015 859 877
, ,[29] Extinction and persistence of a tumor-immune model with white noise and pulsed comprehensive therapy 2021 456 470
, , ,[30] Modelling effects of a chemotherapeutic dose response on a stochastic tumour-immune model 2019 1 13
, ,Cité par Sources :