Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 24.

Voir la notice de l'article provenant de la source EDP Sciences

Analysis of longitudinal vibration in a nanorod is an important subject in science and engineering due to its vast application in nanotechnology. This paper introduces a port-Hamiltonian formulation for the longitudinal vibrations in a nanorod, which shows that this model is essentially hyperbolic. Furthermore, it investigates the spectral properties of the associated system operator. Standard distributed control and feedback are shown not to be controllable nor stabilizing.
DOI : 10.1051/mmnp/2022028

Hanif Heidari 1 ; Hans Zwart 2, 3

1 Department of Applied Mathematics, School of Mathematics and Computer Science, Damghan University, Damghan, P.O. Box 36715-364, Iran
2 Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7500 AE Enschede, The Netherlands
3 Faculty of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
@article{MMNP_2022_17_a12,
     author = {Hanif Heidari and Hans Zwart},
     title = {Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis},
     journal = {Mathematical modelling of natural phenomena},
     eid = {24},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022028/}
}
TY  - JOUR
AU  - Hanif Heidari
AU  - Hans Zwart
TI  - Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022028/
DO  - 10.1051/mmnp/2022028
LA  - en
ID  - MMNP_2022_17_a12
ER  - 
%0 Journal Article
%A Hanif Heidari
%A Hans Zwart
%T Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022028/
%R 10.1051/mmnp/2022028
%G en
%F MMNP_2022_17_a12
Hanif Heidari; Hans Zwart. Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 24. doi : 10.1051/mmnp/2022028. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022028/

[1] S. Akbas Modal analysis of viscoelastic nanorods under an axially harmonic load Adv Nano Res 2020 277 282

[2] S.D. Akbas Forced vibration analysis of cracked nanobeams J. Brazilian Soc. Mech. Sci. Eng 2018 1 11

[3] S.D. Akbas Axially forced vibration analysis of cracked a nanorod J. Comput. Appl. Mech 2019 63 68

[4] P. Alasvand Hadi, H. Heidari, R. Nazemnezhad Approximate controllability of nonlocal Rayleigh beam Comp. M. Diff. Eq 2021 180 186

[5] S.B. Ali, A.B. Oshido, A. Houlton, B.R. Horrocks Models for sensing by nanowire networks: application to organic vapour detection by multiwall carbon nanotube—DNA films Nanotechnology 2021 045502

[6] R.F. Curtain and H.J. Zwart, Vol. 71 of An Introduction to Infinite-Dimensional Linear System Theory: A state-space approach. Springer-Nature (2020).

[7] M. Eren, M. Aydogdu Finite strain nonlinear longitudinal vibration of nanorods Adv. Nano Res 2018 323 337

[8] G. Golo, A. van der Schaft and S. Stramigioli, Hamiltonian formulation of planar beams. IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003) 169–174.

[9] H. Heidari Dynamical analysis of an axially vibrating nanorod Int. J. Appl. Math 2016 263 270

[10] H. Heidari, H. Zwart Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod Math. Comput. Model. Dyn. Syst 2019 447 462

[11] S. Inguva, R.K. Vijayaraghavan, E. Mcglynn, J.P. Mosnier High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates Superlattices Microstruct 2017 8 14

[12] B. Jacob and H.J. Zwart, Linear port-Hamiltonian systems on infinite-dimensional spaces. Springer, Basel (2012).

[13] D. Karlicic, M. Cajic, T. Murmu, S. Adhikari Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems Eur. J. Mech. A/Solids 2015 183 196

[14] A.L. Kozlovskiy, I.V. Korolkov, G. Kalkabay, M.A. Ibragimova, A.D. Ibrayeva, M.V. Zdorovets, V.S. Mikulich, D.V. Yakimchuk, A.E. Shumskaya, E.Y. Kaniukov Comprehensive study of Ni nanotubes for bioapplications: from synthesis to payloads attaching J. Nanomater 2017 3060972

[15] Y. Le Gorrec, H. Zwart, B. Maschke Dirac structures and boundary control systems associated with skew-symmetric differential operators SIAM J. Control Optim 2006 1864 1892

[16] D.L. Liu, W. Lei, S. Qin, Y. Chen Template-free synthesis of functional 3D BN architecture for removal of dyes from water Sci. Rep 2014 1 5

[17] A. Macchelli, A.J. Van Der Schaft, C. Melchiorri Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection Proc. IEEE Conf. Decis. Control 2004 3768 3773

[18] T. Murmu, S. Adhikari Nonlocal effects in the longitudinal vibration of double-nanorod systems Phys. E Low-Dimensional Syst. Nanostructures 2010 415 422

[19] H.M. Numanoglu, B. Akgöz, O. Civalek On dynamic analysis of nanorods Int. J. Eng. Sci 2018 33 50

[20] V.N. Popov Carbon nanotubes: properties and application Mater. Sci. Eng. R Reports 2004 61 102

[21] N.M. Pugno The role of defects in the design of space elevator cable: from nanotube to megatube Acta Mater 2007 5269 5279

[22] S. Rafique, L. Han, H. Zhao Growth and electrical properties of free-standing zinc oxide nanomembranes Cryst. Growth Des 2016 1654 1661

[23] A. Raunika, S.A. Raj, K. Jayakrishna, M.T. Sultan Carbon nanotube: A review on its mechanical properties and application in aerospace industry IOP Conf. Ser. Mater. Sci. Eng 2017 012027

[24] A. Salazar, V. Perez-De La Cruz, E. Munoz-Sandoval, V. Chavarria, M.D.L. Garcia Morales, A. Espinosa-Bonilla, J. Sotelo, A. Jimenez-Anguiano, B. Pineda Potential use of nitrogen-doped carbon nanotube sponges as payload carriers against malignant glioma Nanomaterials 2021 1 11

[25] J.P. Salvetat-Delmotte, A. Rubio Mechanical properties of carbon nanotubes: a fiber digest for beginners Carbon N. Y 2002 1729 1734

[26] M. Simsek Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach Int. J. Eng. Sci 2016 12 27

[27] V. Trenchant, Y. Fares, H. Ramirez, Y. Le Gorrec A port-Hamiltonian formulation of a 2D boundary controlled acoustic system IFAC 2015 235 240

[28] A. Van Der Schaft, D. Jeltsema Port-Hamiltonian systems theory: an introductory overview Found. Trends Syst. Control 2014 173 378

[29] T. Voß, J. Scherpen Port-Hamiltonian modeling of a nonlinear Timoshenko beam with piezo actuation SIAM J. Control Optim 2014 493 519

[30] K. Wang, B. Wang Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy J. Vib. Control 2015 2452 2464

[31] J. Yoon, C. Ru, A. Mioduchowski Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams J. Appl. Mech 2005 10 17

Cité par Sources :