Voir la notice de l'article provenant de la source EDP Sciences
Hanif Heidari 1 ; Hans Zwart 2, 3
@article{MMNP_2022_17_a12, author = {Hanif Heidari and Hans Zwart}, title = {Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis}, journal = {Mathematical modelling of natural phenomena}, eid = {24}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022028}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022028/} }
TY - JOUR AU - Hanif Heidari AU - Hans Zwart TI - Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022028/ DO - 10.1051/mmnp/2022028 LA - en ID - MMNP_2022_17_a12 ER -
%0 Journal Article %A Hanif Heidari %A Hans Zwart %T Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022028/ %R 10.1051/mmnp/2022028 %G en %F MMNP_2022_17_a12
Hanif Heidari; Hans Zwart. Nonlocal longitudinal vibration in a nanorod, a system theoretic analysis. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 24. doi : 10.1051/mmnp/2022028. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022028/
[1] Modal analysis of viscoelastic nanorods under an axially harmonic load Adv Nano Res 2020 277 282
[2] Forced vibration analysis of cracked nanobeams J. Brazilian Soc. Mech. Sci. Eng 2018 1 11
[3] Axially forced vibration analysis of cracked a nanorod J. Comput. Appl. Mech 2019 63 68
[4] Approximate controllability of nonlocal Rayleigh beam Comp. M. Diff. Eq 2021 180 186
, ,[5] Models for sensing by nanowire networks: application to organic vapour detection by multiwall carbon nanotube—DNA films Nanotechnology 2021 045502
, , ,[6] R.F. Curtain and H.J. Zwart, Vol. 71 of An Introduction to Infinite-Dimensional Linear System Theory: A state-space approach. Springer-Nature (2020).
[7] Finite strain nonlinear longitudinal vibration of nanorods Adv. Nano Res 2018 323 337
,[8] G. Golo, A. van der Schaft and S. Stramigioli, Hamiltonian formulation of planar beams. IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003) 169–174.
[9] Dynamical analysis of an axially vibrating nanorod Int. J. Appl. Math 2016 263 270
[10] Port-Hamiltonian modelling of nonlocal longitudinal vibrations in a viscoelastic nanorod Math. Comput. Model. Dyn. Syst 2019 447 462
,[11] High quality interconnected core/shell ZnO nanorod architectures grown by pulsed laser deposition on ZnO-seeded Si substrates Superlattices Microstruct 2017 8 14
, , ,[12] B. Jacob and H.J. Zwart, Linear port-Hamiltonian systems on infinite-dimensional spaces. Springer, Basel (2012).
[13] Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems Eur. J. Mech. A/Solids 2015 183 196
, , ,[14] Comprehensive study of Ni nanotubes for bioapplications: from synthesis to payloads attaching J. Nanomater 2017 3060972
, , , , , , , , ,[15] Dirac structures and boundary control systems associated with skew-symmetric differential operators SIAM J. Control Optim 2006 1864 1892
, ,[16] Template-free synthesis of functional 3D BN architecture for removal of dyes from water Sci. Rep 2014 1 5
, , ,[17] Port Hamiltonian formulation of infinite dimensional systems II. Boundary control by interconnection Proc. IEEE Conf. Decis. Control 2004 3768 3773
, ,[18] Nonlocal effects in the longitudinal vibration of double-nanorod systems Phys. E Low-Dimensional Syst. Nanostructures 2010 415 422
,[19] On dynamic analysis of nanorods Int. J. Eng. Sci 2018 33 50
, ,[20] Carbon nanotubes: properties and application Mater. Sci. Eng. R Reports 2004 61 102
[21] The role of defects in the design of space elevator cable: from nanotube to megatube Acta Mater 2007 5269 5279
[22] Growth and electrical properties of free-standing zinc oxide nanomembranes Cryst. Growth Des 2016 1654 1661
, ,[23] Carbon nanotube: A review on its mechanical properties and application in aerospace industry IOP Conf. Ser. Mater. Sci. Eng 2017 012027
, , ,[24] Potential use of nitrogen-doped carbon nanotube sponges as payload carriers against malignant glioma Nanomaterials 2021 1 11
, , , , , , , ,[25] Mechanical properties of carbon nanotubes: a fiber digest for beginners Carbon N. Y 2002 1729 1734
,[26] Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach Int. J. Eng. Sci 2016 12 27
[27] A port-Hamiltonian formulation of a 2D boundary controlled acoustic system IFAC 2015 235 240
, , ,[28] Port-Hamiltonian systems theory: an introductory overview Found. Trends Syst. Control 2014 173 378
,[29] Port-Hamiltonian modeling of a nonlinear Timoshenko beam with piezo actuation SIAM J. Control Optim 2014 493 519
,[30] Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy J. Vib. Control 2015 2452 2464
,[31] Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams J. Appl. Mech 2005 10 17
, ,Cité par Sources :