The Effect of Composite Material on Rayleigh Wave at Free Surface of Composite Matrix Saturated by Fluids
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 37.

Voir la notice de l'article provenant de la source EDP Sciences

The present study signifies the effect of distinct solids on the phase speed and attenuation of Rayleigh surface wave propagating on the boundary of composite porous matrix saturated with fluids. Secular equation depicting propagation of Rayleigh wave is obtained and solved numerically for obtaining phase speed and attenuation coefficient. Two different types of composite materials are considered for numerical study to analyze the effect of solids present in the structure. The study depicts that increase in rigidity of the composite increases the phase speed of the Rayleigh surface wave. Significant effect of the density and bulk modulus of fluid mixture present in the pores is also observed on the phase speed of the wave. The effect of porosity on the phase speed of the Rayleigh wave and the particle motion during the propagation of the wave is also analyzed.
DOI : 10.1051/mmnp/2022025

Ashish Arora 1 ; Neeru Bala 2

1 Department of Mathematical Sciences, IKG Punjab Technical University, Kapurthala 144 603, Punjab, India
2 Department of Mathematics, DAV Institute of Engineering and Technology, Jalandhar 144 008, India
@article{MMNP_2022_17_a38,
     author = {Ashish Arora and Neeru Bala},
     title = {The {Effect} of {Composite} {Material} on {Rayleigh} {Wave} at {Free} {Surface} of {Composite} {Matrix} {Saturated} by {Fluids}},
     journal = {Mathematical modelling of natural phenomena},
     eid = {37},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022025/}
}
TY  - JOUR
AU  - Ashish Arora
AU  - Neeru Bala
TI  - The Effect of Composite Material on Rayleigh Wave at Free Surface of Composite Matrix Saturated by Fluids
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022025/
DO  - 10.1051/mmnp/2022025
LA  - en
ID  - MMNP_2022_17_a38
ER  - 
%0 Journal Article
%A Ashish Arora
%A Neeru Bala
%T The Effect of Composite Material on Rayleigh Wave at Free Surface of Composite Matrix Saturated by Fluids
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022025/
%R 10.1051/mmnp/2022025
%G en
%F MMNP_2022_17_a38
Ashish Arora; Neeru Bala. The Effect of Composite Material on Rayleigh Wave at Free Surface of Composite Matrix Saturated by Fluids. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 37. doi : 10.1051/mmnp/2022025. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022025/

[1] B. Albers On results of the surface wave analyses in poroelastic media by means of the simple mixture model and the Biot model Soil Dyn Earthq Eng. 2006 537 547

[2] A. Arora, A. Painuley, S.K. Tomar Body waves in composite solid matrix containing two immiscible fluids Transp Porous Med. 2015 531 554

[3] A. Arora, N. Bala, S.K. Tomar A mathematical model for wave propagation in a composite solid matrix containing two immiscible fluids Acta Mech. 2016 1453 1467

[4] R.D. Borcherdt Rayleigh-type surface wave on a linear viscoelastic half-space J Acoust Soc Am. 1973 651 653

[5] J.M. Carcione Rayleigh waves in isotropic viscoelastic media Geophys. J. Int. 1992 453 464

[6] A. Colombi, P. Roux, D.J. Colquitt, S. Guenneau, V. Ageeva, M. Clark, R. Craster New frontiers in elastic metamaterials for controlling surface waves J Acoust Soc Am. 2016 3103 3103

[7] P.K. Currie, M.A. Hayes, O’P.M. Leary Viscoelastic Rayleigh waves Q Appl Math. 1977 35 53

[8] P.K. Currie, O’P.M. Leary Viscoelastic Rayleigh waves II. Q Appl Math. 1978 445 454

[9] P.K. Currie Viscoelastic surface waves on a standard linear solid Q Appl Math. 1979 332 336

[10] Z. Dai, Z. Kuang, S. Zhao Rayleigh waves in a double porosity half-space J. Sound Vib. 2006 319 332

[11] H. Deresiewicz The effect of boundaries on wave propagation in a liquid-filled porous solid-IV. Surface waves in a half-space Bull Seismol Soc Am. 1962 627 638

[12] F. Ebrahimi (Ed.), Surface waves: New trends and developments. IntechOpen, London (2018).

[13] W.M. Ewing and W.S. Jardetzky, Elastic waves in layered media. Frank Press, McgrawHill, New York (1957).

[14] S. Foti, C.G. Lai, G.J. Rix and C. Strobbia, Surface wave methods for near surface site characterization. CRC Press, Taylor Francis Group, New York (2015).

[15] S. Gupta, M. Ahmed Influence of prestress and periodic corrugated boundary surfaces on Rayleigh waves in an orthotropic medium over a transversely isotropic dissipative semi infinite substrate Eur. Phys. J Plus. 2017

[16] J.P. Jones Rayleigh waves in a porous, elastic, saturated solid J. Acoust. Soc. Am. 1961 959 962

[17] A. Kumari, S. Kundu, S. Gupta Propagation and attenuation characteristics of Rayleigh waves induced due to irregular surface in liquid-saturated micropolar porous half-space Eur. Phys. J. Plus. 2019 576

[18] P. Leclaire, F. Cohen-Tenoudji, J. Aguirre-Puente Extension of Biot’s theory of wave propagation to frozen porous media J Acoust Soc Am. 1994 3753 3768

[19] W.C. Lo, G. Sposito, E. Majer Wave propagation through elastic porous media containing two immiscible fluids Water Resource Res. 2005 1 20

[20] W.C. Lo Propagation and attenuation of Rayleigh waves in a semi-infinite unsaturated poroelastic medium Adv Water Resour 2008 1399 1410

[21] Z. Lu Feasibility of using a seismic surface wave method to study seasonal and weather effects on shallow surface soils J. Environ. Eng. Geophys. 2014 71 85

[22] G.D. Moro, Surface Wave Analysis for Near Surface Applications. Elsevier, Amsterdam (2015).

[23] I.Z. Nenadic, M.W. Urban, M. Bernal, J.F. Greenleaf Phase velocities and attenuations of shear, Lamb, and Rayleigh waves in plate-like tissues submerged in a fluid (L) J. Acoust. Soc. Am. 2011 3549

[24] H. Omrani, L. Hassini, A. Benazzouk, H. Beji, A. Elcafsi Elaboration and characterization of clay-sand composite based on Juncus acutus fibers Const Build Mat. 2020 117712

[25] A. Painuley, A. Arora Rayleigh wave at composite porous half space saturated by two immiscible fluids Appl. Math. Model. 2019 124 135

[26] M. Romeo Rayleigh waves on a viscoelastic solid half-space J. Acous. Soc. Am. 2001 59 67

[27] M. D. Sharma Propagation of Rayleigh waves at the boundary of an orthotopic elastic solid: influence of initial stress and gravity J. Vib. Cont. 2020 2070 2080

[28] M.D. Sharma, Propagation of Rayleigh waves at the boundary of an orthotropic elastic solid: influence of initial stress and gravity. J. Vib. Cont. (2022) 1203–1214.

[29] P. Singh, A. Chattopadhyay, A.K. Singh Rayleigh-type wave propagation in incompressible visco-elastic media under initial stress Appl Math. Mech. 2018 317 334

[30] K. Tokeshi, P. Harutoonian, C.J. Leo, S. Liyanapathirana Use of surface waves for geotechnical engineering applications in Western Sydney Adv. Geosci. 2013 37 44

[31] N. Vasiliev, A.D.C. Pronk, I.N. Shatalina, F.H.M.E. Janssen A review on the development of reinforced ice for use as a building material in cold regions Cold Reg. Sci. Tech. 2015 115

[32] P.C. Vinh, A. Aoudia, P.T.H. Giang Rayleigh waves in orthotropic fluid-saturated porous media Wave Motion. 2016 73 82

[33] X. Yang, Y. Xueyi Estimating parameters of Van Genuchten model for soil water retention curve by intelligent algorithm Appl. Math. Inf. Sci. 2013 1977 1983

[34] O.Z. Yilmaz, Engineering seismology with applications to geotechnical engineering. Society of Exploration Geophysicists. Tulsa (2015). doi: 10.1190/1.9781560803300

Cité par Sources :