Higher-order semi-rational solutions for the coupled complex modified Korteweg-de Vries equation
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 4.

Voir la notice de l'article provenant de la source EDP Sciences

We explore the Darboux-dressing transformation of the coupled complex modified Korteweg-de Vries equation. Next, with the aid of an asymptotic expansion theory, we derive the concrete forms of three types of semi-rational solutions. In particular, the seed solution is related to the normalized distance and retarded time. Interestingly, we construct a kind of novel rogue wave called as curve rogue wave. More importantly, the kinetics of semi-rational solutions are discussed in detail. We hope that these results would shed more light on comprehending of the solutions occurring in multi-component coupled systems.
DOI : 10.1051/mmnp/2022006

Yu Lou 1 ; Yi Zhang 1 ; Rusuo Ye 1

1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, PR China.
@article{MMNP_2022_17_a21,
     author = {Yu Lou and Yi Zhang and Rusuo Ye},
     title = {Higher-order semi-rational solutions for the coupled complex modified {Korteweg-de} {Vries} equation},
     journal = {Mathematical modelling of natural phenomena},
     eid = {4},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022006/}
}
TY  - JOUR
AU  - Yu Lou
AU  - Yi Zhang
AU  - Rusuo Ye
TI  - Higher-order semi-rational solutions for the coupled complex modified Korteweg-de Vries equation
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022006/
DO  - 10.1051/mmnp/2022006
LA  - en
ID  - MMNP_2022_17_a21
ER  - 
%0 Journal Article
%A Yu Lou
%A Yi Zhang
%A Rusuo Ye
%T Higher-order semi-rational solutions for the coupled complex modified Korteweg-de Vries equation
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022006/
%R 10.1051/mmnp/2022006
%G en
%F MMNP_2022_17_a21
Yu Lou; Yi Zhang; Rusuo Ye. Higher-order semi-rational solutions for the coupled complex modified Korteweg-de Vries equation. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 4. doi : 10.1051/mmnp/2022006. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022006/

[1] N. Akhmediev, A. Ankiewicz, M. Taki Waves that appear from nowhere and disappear without a trace Phys. Lett. A 2009 675 678

[2] N. Akhmediev, V.I. Korneev Modulation instability and periodic solutions of the nonlinear Schrödinger equation Theor. Math. Phys 1986 1089 1093

[3] Y.V. Bludov, V.V. Konotop, N. Akhmediev Matter rogue waves Phys. Rev. A 2009 033610

[4] A. Degasperis, S. Lombardo Multicomponent integrable wave equations: I. Darboux-dressing transformation J. Phys. A: Math. Theor 2007 961 977

[5] A. Degasperis, S. Lombardo Multicomponent integrable wave equations: II. Soliton solutions J. Phys. A: Math. Theor 2009 2467 2480

[6] K. Dysthe, H.E. Krogstad, P. Müller Oceanic rogue waves Annu. Rev. Fluid Mech 2008 287 310

[7] H.A. Erbay Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg-de Vries equation Phys. Scr 1998 9 14

[8] X.G. Geng, Y.Y. Zhai, H.H. Dai Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy Adv. Math 2014 123 153

[9] B.L. Guo, L.M. Ling, Q.P. Liu, C.F. Wu Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions Phys. Rev. E 2012 026607

[10] J.S. He, L.H. Wang, L.J. Li, K. Porsezian, R. Erdélyi Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation Phys. Rev. E 2014 062917

[11] A.H. Khater, O.H. El-Kalaawy, D.K. Callebaut Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma Phys. Scr 1988 545

[12] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias The Peregrine soliton in nonlinear fibre optics Nat. Phys 2010 790

[13] E.A. Kuznetsov Solitons in a parametrically unstable plasma Akad. Nauk SSSR Dokl 1977 575 577

[14] H. Leblond, P. Grelu, D. Mihalache Models for supercontinuum generation beyond the slowly-varying-envelope approximation Phys. Rev. A 2014 053816

[15] L.M. Ling, B.L. Guo, L.C. Zhao High-order rogue waves in vector nonlinear Schrödinger equations Phys. Rev. E 2014 041201

[16] K.E. Lonngren Ion acoustic soliton experiments in a plasma Opt. Quant. Electron 1998 615

[17] Y. Lou, Y. Zhang, R.S. Ye Modulation instability, higher-order rogue waves and dynamics of the Gerdjikov-Ivanov equation Wave Motion 2021 102795

[18] Y. Lou, Y. Zhang, R.S. Ye, M. Li Solitons and dynamics for the integrable nonlocal pair-transition-coupled nonlinear Schrödinger equation Appl. Math. Comput 2021 126417

[19] W.X. Ma Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system J. Geom. Phys 2018 45 54

[20] G. Mu, Z.Y. Qin, R. Grimshaw Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation SIAM.J. Appl. Math 2015 1 20

[21] N.V. Priya, M. Senthilvelan, M. Lakshmanan Akhmediev breathers, Ma solitons, and general breathers from rogue waves: a case study in the Manakov system Phys. Rev. E 2013 022918

[22] D.R. Solli, C. Ropers, P. Koonath Optical rogue waves Nature 2007 1054 1057

[23] X. Wang, Y. Li, Y. Chen Generalized Darboux transformation and localized waves in coupled Hirota equations Wave Motion 2014 1149 1160

[24] R. Wang, Y. Zhang, X.T. Chen, R.S. Ye The rational and semi-rational solutions to the Hirota-Maccari system Nonlinear Dyn 2020 2767 2778

[25] T. Xu, G.L. He Higher-order interactional solutions and rogue wave pairs for the coupled Lakshmanan-Porsezian-Daniel equations Nonlinear Dyn 2019 1731 1744

[26] T. Xu, G.L. He The coupled derivative nonlinear Schrödinger equation: conservation laws, modulation instability and semirational solutions Nonlinear Dyn 2020 2823 2837

[27] Z.Y. Yan Vector financial rogue waves Phys. Lett. A 2011 4274 4279

[28] R.S. Ye, Y. Zhang, Q.Y. Zhang, X.T. Chen Vector rational and semi-rational rogue wave solutions in the coupled complex modified Korteweg-de Vries equations Wave Motion 2019 102425

[29] Y.Y. Zhai, T. Ji, X.G. Geng Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber Appl. Math. Comput 2021 126551

[30] Y. Zhang, R.S. Ye, W.X. Ma Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg-de Vries equations Math. Meth. Appl. Sci 2019 613 627

[31] Y. Zhang, J.W. Yang, K.W. Chow Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation Nonlinear Anal. RWA 2017 237 252

Cité par Sources :