Voir la notice de l'article provenant de la source EDP Sciences
Yu Lou 1 ; Yi Zhang 1 ; Rusuo Ye 1
@article{MMNP_2022_17_a21, author = {Yu Lou and Yi Zhang and Rusuo Ye}, title = {Higher-order semi-rational solutions for the coupled complex modified {Korteweg-de} {Vries} equation}, journal = {Mathematical modelling of natural phenomena}, eid = {4}, publisher = {mathdoc}, volume = {17}, year = {2022}, doi = {10.1051/mmnp/2022006}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022006/} }
TY - JOUR AU - Yu Lou AU - Yi Zhang AU - Rusuo Ye TI - Higher-order semi-rational solutions for the coupled complex modified Korteweg-de Vries equation JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022006/ DO - 10.1051/mmnp/2022006 LA - en ID - MMNP_2022_17_a21 ER -
%0 Journal Article %A Yu Lou %A Yi Zhang %A Rusuo Ye %T Higher-order semi-rational solutions for the coupled complex modified Korteweg-de Vries equation %J Mathematical modelling of natural phenomena %D 2022 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022006/ %R 10.1051/mmnp/2022006 %G en %F MMNP_2022_17_a21
Yu Lou; Yi Zhang; Rusuo Ye. Higher-order semi-rational solutions for the coupled complex modified Korteweg-de Vries equation. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 4. doi : 10.1051/mmnp/2022006. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022006/
[1] Waves that appear from nowhere and disappear without a trace Phys. Lett. A 2009 675 678
, ,[2] Modulation instability and periodic solutions of the nonlinear Schrödinger equation Theor. Math. Phys 1986 1089 1093
,[3] Matter rogue waves Phys. Rev. A 2009 033610
, ,[4] Multicomponent integrable wave equations: I. Darboux-dressing transformation J. Phys. A: Math. Theor 2007 961 977
,[5] Multicomponent integrable wave equations: II. Soliton solutions J. Phys. A: Math. Theor 2009 2467 2480
,[6] Oceanic rogue waves Annu. Rev. Fluid Mech 2008 287 310
, ,[7] Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg-de Vries equation Phys. Scr 1998 9 14
[8] Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy Adv. Math 2014 123 153
, ,[9] Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions Phys. Rev. E 2012 026607
, , ,[10] Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation Phys. Rev. E 2014 062917
, , , ,[11] Bäcklund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma Phys. Scr 1988 545
, ,[12] The Peregrine soliton in nonlinear fibre optics Nat. Phys 2010 790
, , , ,[13] Solitons in a parametrically unstable plasma Akad. Nauk SSSR Dokl 1977 575 577
[14] Models for supercontinuum generation beyond the slowly-varying-envelope approximation Phys. Rev. A 2014 053816
, ,[15] High-order rogue waves in vector nonlinear Schrödinger equations Phys. Rev. E 2014 041201
, ,[16] Ion acoustic soliton experiments in a plasma Opt. Quant. Electron 1998 615
[17] Modulation instability, higher-order rogue waves and dynamics of the Gerdjikov-Ivanov equation Wave Motion 2021 102795
, ,[18] Solitons and dynamics for the integrable nonlocal pair-transition-coupled nonlinear Schrödinger equation Appl. Math. Comput 2021 126417
, , ,[19] Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system J. Geom. Phys 2018 45 54
[20] Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation SIAM.J. Appl. Math 2015 1 20
, ,[21] Akhmediev breathers, Ma solitons, and general breathers from rogue waves: a case study in the Manakov system Phys. Rev. E 2013 022918
, ,[22] Optical rogue waves Nature 2007 1054 1057
, ,[23] Generalized Darboux transformation and localized waves in coupled Hirota equations Wave Motion 2014 1149 1160
, ,[24] The rational and semi-rational solutions to the Hirota-Maccari system Nonlinear Dyn 2020 2767 2778
, , ,[25] Higher-order interactional solutions and rogue wave pairs for the coupled Lakshmanan-Porsezian-Daniel equations Nonlinear Dyn 2019 1731 1744
,[26] The coupled derivative nonlinear Schrödinger equation: conservation laws, modulation instability and semirational solutions Nonlinear Dyn 2020 2823 2837
,[27] Vector financial rogue waves Phys. Lett. A 2011 4274 4279
[28] Vector rational and semi-rational rogue wave solutions in the coupled complex modified Korteweg-de Vries equations Wave Motion 2019 102425
, , ,[29] Coupled derivative nonlinear Schrödinger III equation: Darboux transformation and higher-order rogue waves in a two-mode nonlinear fiber Appl. Math. Comput 2021 126551
, ,[30] Binary Darboux transformation and soliton solutions for the coupled complex modified Korteweg-de Vries equations Math. Meth. Appl. Sci 2019 613 627
, ,[31] Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation Nonlinear Anal. RWA 2017 237 252
, ,Cité par Sources :