Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation
Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 2.

Voir la notice de l'article provenant de la source EDP Sciences

The nonlocal symmetry of the new (3+1)-dimensional Boussinesq equation is obtained with the truncated Painlevé method. The nonlocal symmetry can be localized to the Lie point symmetry for the prolonged system by introducing auxiliary dependent variables. The finite symmetry transformation related to the nonlocal symmetry of the integrable (3+1)-dimensional Boussinesq equation is studied. Meanwhile, the new (3+1)-dimensional Boussinesq equation is proved by the consistent tanh expansion method and many interaction solutions among solitons and other types of nonlinear excitations such as cnoidal periodic waves and resonant soliton solution are given.
DOI : 10.1051/mmnp/2022001

Hengchun Hu 1 ; Xiaodan Li 1

1 College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
@article{MMNP_2022_17_a20,
     author = {Hengchun Hu and Xiaodan Li},
     title = {Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable {Boussinesq} equation},
     journal = {Mathematical modelling of natural phenomena},
     eid = {2},
     publisher = {mathdoc},
     volume = {17},
     year = {2022},
     doi = {10.1051/mmnp/2022001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022001/}
}
TY  - JOUR
AU  - Hengchun Hu
AU  - Xiaodan Li
TI  - Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation
JO  - Mathematical modelling of natural phenomena
PY  - 2022
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022001/
DO  - 10.1051/mmnp/2022001
LA  - en
ID  - MMNP_2022_17_a20
ER  - 
%0 Journal Article
%A Hengchun Hu
%A Xiaodan Li
%T Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation
%J Mathematical modelling of natural phenomena
%D 2022
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022001/
%R 10.1051/mmnp/2022001
%G en
%F MMNP_2022_17_a20
Hengchun Hu; Xiaodan Li. Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation. Mathematical modelling of natural phenomena, Tome 17 (2022), article  no. 2. doi : 10.1051/mmnp/2022001. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022001/

[1] C.L. Chen, S.Y. Lou CTE solvability and exact solution to the Broer-Kaup system Chin. Phys. Lett 2013 110202

[2] X.P. Cheng, S.Y. Lou, C.L. Chen, X.Y. Tang Interactions between solitons and other nonlinear Schrödinger waves Phys. Rev. E 2014 1 14

[3] W.G. Cheng, B. Li, Y. Chen Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking soliton equation Commun. Nonlinear Sci. Numer. Simulat 2015 198 207

[4] C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura Method for solving the Korteweg-de Vries equation Phys. Rev. Lett 1967 1095 1097

[5] G.A. Guthrie More non-local symmetries of the KdV equation J. Phys. A: Math. Gen 1993 L905 L908

[6] R. Hirota, The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004).

[7] X.R. Hu, Y. Chen Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer-Kaup-Kupershmidt system Chin. Phys. B 2015 090203

[8] H.C. Hu, X. Hu, B.F. Feng Nonlocal symmetry and consistent tanh expansion method for the coupled integrable dispersionless equation Z. Naturforsch. A 2016 235 240

[9] X.R. Hu, S.Y. Lou, Y. Chen Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation Phys. Rev. E 2012 056607

[10] Y.Y. Li, H.C. Hu Nonlocal symmetries and interaction solutions of the Benjamin-Ono equation Appl. Math. Lett 2018 18 23

[11] S.Y. Lou, Residual symmetries and Bäcklund transformations. Preprint arXiv:1308.1140v1 [nlin.SI] (2013).

[12] S.Y. Lou Consistent Riccati expansion for integrable systems Stud. Appl. Math 2015 372 402

[13] S.Y. Lou, X.R. Hu, Y. Chen Nonlocal symmetries related to Bäcklund transformation and their applications J. Phys. A: Math. Theor 2012 155209

[14] V.B. Matveev, and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlin, Berlin (1991).

[15] P.J. Olver, J. Sanders, J.P. Wang Ghost symmetries J. Nonlinear Math. Phys 2002 164 172

[16] B. Ren Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method Phys. Scr 2015 065206

[17] B. Ren Symmetry reduction related with nonlocal symmetry for Gardner equation Commun. Nonlinear Sci. Numer. Simulat 2017 456 463

[18] B. Ren, W.X. Ma, J. Yu Characteristics and interactions of solitary and lump waves of a (2 + 1)-dimensional coupled nonlinear partial differential equation Nonlinear Dyn 2019 717 727

[19] B. Ren, J. Lin, Z.M. Lou Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation Appl. Math. Lett 2020 106326

[20] B. Ren, X.P. Cheng, J. Lin The (2+1)-dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutions Nonlinear Dyn 2016 1855 1862

[21] C. Rogers and W.K. Schief, Bäcklund and Darboux Transformation, Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge (2002).

[22] X.Y. Tang, S.Y. Lou, Y. Zhang Localized excitations in (2+1)-dimensional systems Phys. Rev. E 2002 046601

[23] Y.H. Wang CTE method to the interaction solutions of Boussinesq-Burgers equations Appl. Math. Lett 2014 100 105

[24] Y.H. Wang, H. Wang Symmetry analysis and CTE solvability for the (2+1)-dimensional Boiti-Leon-Pempinelli equation Phys. Scr 2014 125203

[25] A.M. Wazwaz, L. Kaur New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions Nonlinear Dyn 2019 83 94

[26] J. Weiss, M. Tabor, G. Carnevale The Painlevé property for partial differential equations J. Math. Phys 1983 522 526

Cité par Sources :