@article{10_1051_mmnp_2022001,
author = {Hengchun Hu and Xiaodan Li},
title = {Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable {Boussinesq} equation},
journal = {Mathematical modelling of natural phenomena},
eid = {2},
year = {2022},
volume = {17},
doi = {10.1051/mmnp/2022001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022001/}
}
TY - JOUR AU - Hengchun Hu AU - Xiaodan Li TI - Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation JO - Mathematical modelling of natural phenomena PY - 2022 VL - 17 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022001/ DO - 10.1051/mmnp/2022001 LA - en ID - 10_1051_mmnp_2022001 ER -
%0 Journal Article %A Hengchun Hu %A Xiaodan Li %T Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation %J Mathematical modelling of natural phenomena %D 2022 %V 17 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2022001/ %R 10.1051/mmnp/2022001 %G en %F 10_1051_mmnp_2022001
Hengchun Hu; Xiaodan Li. Nonlocal symmetry and interaction solutions for the new (3+1)-dimensional integrable Boussinesq equation. Mathematical modelling of natural phenomena, Tome 17 (2022), article no. 2. doi: 10.1051/mmnp/2022001
[1] , CTE solvability and exact solution to the Broer-Kaup system Chin. Phys. Lett 2013 110202
[2] , , , Interactions between solitons and other nonlinear Schrödinger waves Phys. Rev. E 2014 1 14
[3] , , Nonlocal symmetry and exact solutions of the (2+1)-dimensional breaking soliton equation Commun. Nonlinear Sci. Numer. Simulat 2015 198 207
[4] , , , Method for solving the Korteweg-de Vries equation Phys. Rev. Lett 1967 1095 1097
[5] More non-local symmetries of the KdV equation J. Phys. A: Math. Gen 1993 L905 L908
[6] R. Hirota, The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004).
[7] , Nonlocal symmetries, consistent Riccati expansion integrability, and their applications of the (2+1)-dimensional Broer-Kaup-Kupershmidt system Chin. Phys. B 2015 090203
[8] , , Nonlocal symmetry and consistent tanh expansion method for the coupled integrable dispersionless equation Z. Naturforsch. A 2016 235 240
[9] , , Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation Phys. Rev. E 2012 056607
[10] , Nonlocal symmetries and interaction solutions of the Benjamin-Ono equation Appl. Math. Lett 2018 18 23
[11] S.Y. Lou, Residual symmetries and Bäcklund transformations. Preprint arXiv:1308.1140v1 [nlin.SI] (2013).
[12] Consistent Riccati expansion for integrable systems Stud. Appl. Math 2015 372 402
[13] , , Nonlocal symmetries related to Bäcklund transformation and their applications J. Phys. A: Math. Theor 2012 155209
[14] V.B. Matveev, and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlin, Berlin (1991).
[15] , , Ghost symmetries J. Nonlinear Math. Phys 2002 164 172
[16] Interaction solutions for mKP equation with nonlocal symmetry reductions and CTE method Phys. Scr 2015 065206
[17] Symmetry reduction related with nonlocal symmetry for Gardner equation Commun. Nonlinear Sci. Numer. Simulat 2017 456 463
[18] , , Characteristics and interactions of solitary and lump waves of a (2 + 1)-dimensional coupled nonlinear partial differential equation Nonlinear Dyn 2019 717 727
[19] , , Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation Appl. Math. Lett 2020 106326
[20] , , The (2+1)-dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutions Nonlinear Dyn 2016 1855 1862
[21] C. Rogers and W.K. Schief, Bäcklund and Darboux Transformation, Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge (2002).
[22] , , Localized excitations in (2+1)-dimensional systems Phys. Rev. E 2002 046601
[23] CTE method to the interaction solutions of Boussinesq-Burgers equations Appl. Math. Lett 2014 100 105
[24] , Symmetry analysis and CTE solvability for the (2+1)-dimensional Boiti-Leon-Pempinelli equation Phys. Scr 2014 125203
[25] , New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions Nonlinear Dyn 2019 83 94
[26] , , The Painlevé property for partial differential equations J. Math. Phys 1983 522 526
Cité par Sources :