Zakya Sari 1 ; Tarik Mohammed Touaoula 1 ; Bedreddine Ainseba 2
@article{10_1051_mmnp_2021049,
author = {Zakya Sari and Tarik Mohammed Touaoula and Bedreddine Ainseba},
title = {Mathematical analysis of an age structured epidemic model with a quarantine class},
journal = {Mathematical modelling of natural phenomena},
eid = {57},
year = {2021},
volume = {16},
doi = {10.1051/mmnp/2021049},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021049/}
}
TY - JOUR AU - Zakya Sari AU - Tarik Mohammed Touaoula AU - Bedreddine Ainseba TI - Mathematical analysis of an age structured epidemic model with a quarantine class JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021049/ DO - 10.1051/mmnp/2021049 LA - en ID - 10_1051_mmnp_2021049 ER -
%0 Journal Article %A Zakya Sari %A Tarik Mohammed Touaoula %A Bedreddine Ainseba %T Mathematical analysis of an age structured epidemic model with a quarantine class %J Mathematical modelling of natural phenomena %D 2021 %V 16 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021049/ %R 10.1051/mmnp/2021049 %G en %F 10_1051_mmnp_2021049
Zakya Sari; Tarik Mohammed Touaoula; Bedreddine Ainseba. Mathematical analysis of an age structured epidemic model with a quarantine class. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 57. doi: 10.1051/mmnp/2021049
[1] , , , Control strategies for TB epidemics Siam J. Appl. Math 2017 82 107
[2] , Optimal screening in structured SIR epidemics MMNP 2012 12 27
[3] , , , , Local stability analysis of an infection age mathematical model for tuberculosis disease dynamics J. Appl. Sci. Environ. Manag 2015 665 669
[4] , , Global dynamics of an SEIR model with two age structures and a nonlinear incidence Acta Appl. Math 2021 1 27
[5] , Global analysis of an infection age model with a class of nonlinear incidence rates J. Math. Anal. Appl 2016 1211 1239
[6] Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir Mém. Math. Phys. Acad. Roy. Sci., Paris 1766 1 45
[7] Reflexions sur les avantages de l’inoculation Mercure de France 1760 173 190
[8] , Global stability of an infection and vaccination age-structured model with general nonlinear incidence J. Nonlinear Funct. Anal 2018 1 21
[9] Age infection in epidemiology models Electr. J. Differ. Equ. Conf 2005 29 37
[10] C. Castillo-Chavez and Z. Feng, Mathematical models for the disease dynamics of the tuberculosis, Fourth International Conference on Mathematical Population Dynamics (1995).
[11] , , , Global stability of an age structured epidemic model with general Lyapunov functional Math. Biosci. Eng 2019 1525 1553
[12] , , , Mathematical analysis of an age structured heroin-cocaine epidemic model Discr. Continu. Dyn. Syst. B 2020 444 4477
[13] , , The global stability for an SIRS model with infection age Math. Biosci. Eng 2014 449 469
[14] , , On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
[15] , , A Heroin epidemic model: very general non linear incidence, treat-age, and global stability Acta Appl. Math. Math. Appl 2017 171 194
[16] , , Mathematical Analysis of an SIQR influenza model with imperfect quarantine Bull. Math. Biol 2017
[17] M.N. Frioui, T.M. Touaoula and B. Ainseba, Global dynamics of an age structured model with relapse. Discrete Contin. Dyn. Syst. Ser. B (2020) doi: 10.3934/dcdsb.2019226.
[18] M. Iannelli, Mathematical Theory of Age- Structured Population Dynamics. Giardini Editori E Stampatori In Pisa (1994).
[19] M. Iannelli and F. Milner, The basic Approach to age structured population Dynamics: Models, Methods and Numerics. Lecture Notes on Mathematical Modelling in the Life Science (2017).
[20] , Contributions to the mathematical theory of epidemics 1 Proc. R. Soc 1927 700 721
[21] Stability Analysis of an Age structured SIR model with a reduction method to EDOs Mathematics 2018 147
[22] J.P. LaSalle, The stability of dynamical systems. Regional conference series in applied mathematics, 25. SIAM (1976).
[23] , Theory and Applications of Abstract semilinear Cauchy problems Appl. Math. Sci 2018
[24] , , Lyapunov functional and global asymptotic stability for infection age model Appl. Anal 2010 1109 1140
[25] Preventive therapy for tuberculosis Med. Clin. N. Am 1993 1263 1275
[26] , , Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions Trans. Am. Math. Soc 1995 1669 1685
[27] Global stability and uniform persistence for an infection Load structured SI model with Exponential growth velocity Commun. Pure Appl. Anal 2019 15 32
[28] , Dynamical Systems and population persistence Graduate Studies in Mathematics 2011
[29] , How may infection age dependent infectivity affects the dynamics of HIV/AIDS Siam J. Appl. Math 1993 1447 1479
[30] G.F. Webb, Theory of Nonlinear age Dependent Population Dynamics. Marcel Dekker, New York (1985).
[31] , , Global dynamics of tuberculosis transmission model with age of infection and incomplete treatment Adv. Differ. Equ 2017 242
[32] , , Global stability of an age structured virus Dynamics Model with Beddington–Deangelis infection function Math. Biosci. Eng 2015 859 877
[33] Z. Yui, Y. Yougguang and Z. Lu, Stability analysis of an age structured SEIRS model with time delay (2020).
Cité par Sources :