Mohammed Al-Smadi 1, 2 ; Hemen Dutta 3 ; Shatha Hasan 1 ; Shaher Momani 2, 4
@article{10_1051_mmnp_2021030,
author = {Mohammed Al-Smadi and Hemen Dutta and Shatha Hasan and Shaher Momani},
title = {On numerical approximation of {Atangana-Baleanu-Caputo} fractional integro-differential equations under uncertainty in {Hilbert} {Space}},
journal = {Mathematical modelling of natural phenomena},
eid = {41},
year = {2021},
volume = {16},
doi = {10.1051/mmnp/2021030},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021030/}
}
TY - JOUR AU - Mohammed Al-Smadi AU - Hemen Dutta AU - Shatha Hasan AU - Shaher Momani TI - On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021030/ DO - 10.1051/mmnp/2021030 LA - en ID - 10_1051_mmnp_2021030 ER -
%0 Journal Article %A Mohammed Al-Smadi %A Hemen Dutta %A Shatha Hasan %A Shaher Momani %T On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space %J Mathematical modelling of natural phenomena %D 2021 %V 16 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021030/ %R 10.1051/mmnp/2021030 %G en %F 10_1051_mmnp_2021030
Mohammed Al-Smadi; Hemen Dutta; Shatha Hasan; Shaher Momani. On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 41. doi: 10.1051/mmnp/2021030
[1] , , On the concept of solution for fractional differential equations with uncertainty Nonlinear Anal 2010 2859 2862
[2] , , , , Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term Phys. Scr 2020 105215
[3] Reliable numerical algorithm for handling fuzzy integral equations of second kind in Hilbert spaces Filomat 2019 583 597
[4] , On the fuzzy fractional differential equation with interval Atangana–Baleanu fractional derivative approach Chaos Solitons Fract 2020 109397
[5] , , Explicit solutions of fractional differential equations with uncertainty Soft Comput 2012 297 302
[6] G.A. Anastassiou, Fuzzy mathematics: approximation theory. Vol. 251 of Studies in Fuzziness and Soft Computing. Springer, Berlin, Heidelberg (2010).
[7] M. Al-Smadi, Fractional residual series for conformable time-fractional Sawada-Kotera-Ito, Lax, and Kaup-Kupershmidt equations of seventh-order. Math. Methods Appl. Sci. (2021). DOI: 10.1002/mma.7507.
[8] Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation Ain Shams Eng. J 2018 2517 2525
[9] , Computational algorithm for solving Fredholm time-fractional partial integrodifferential equationsof Dirichlet functions type with error estimates Appl. Math. Comput 2019 280 294
[10] , , A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equations Math. Probl. Eng 2013 832074
[11] , , Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applications Chaos Solitons Fract 2021 110891
[12] , , Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method Phys. Scr 2020 105205
[13] , , An attractive analytical technique for coupled system of fractional partial differential equationsin shallow water waves with conformable derivative Commun. Theor. Phys 2020 085001
[14] M. Al-Smadi, O. Abu Arqub and M. Gaith, Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework. Math. Methods Appl. Sci. (2020). DOI: 10.1002/mma.6998.
[15] , , Numerical computations of coupled fractional resonant Schrödinger equations arising inquantum mechanics under conformable fractional derivative sense Phys. Scr 2020 075218
[16] , , , Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method Appl. Math. Comput 2016 137 148
[17] , , , , Numerical multistep approach for solving fractional partial differential equations Int. J. Comput. Methods 2017 1750029
[18] Theory of reproducing kernels Trans. Am. Math. Soc 1950 337 404
[19] On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation Appl. Math. Comput 2016 948 956
[20] , Nonlinear fractional Jaulent-Miodek and Whitham-Broer-Kaup equations within Sumudu transform Abstr. Appl. Anal 2013 160681
[21] , New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model Thermal Sci 2016 763 769
[22] , , , Fractional differential and integral operators with non-singular and non-local kernel with application to nonlinear dynamical systems Chaos Solitons Fract 2020 109493
[23] , On some new properties of fractional derivatives with Mittag-Leffler kernel Commun. Nonlinear Sci. Numer. Simul 2018 444 462
[24] , Generalized differentiability of fuzzy valued functions Fuzzy Sets Syst 2013 119 141
[25] , A new definition of fractional derivative without singular Kernel Progr. Fract. Differ. Appl 2015 73 85
[26] M. Cui and Y. Lin, Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science, New York, NY, USA (2009).
[27] , Towards the theory of fuzzy differential equations Fuzzy Sets Syst 1999 63 71
[28] , , , Modified analytical approach for generalized quadratic and cubic logistic models with Caputo-Fabrizio fractional derivative Alexandria Eng. J 2020 5111 5122
[29] , Operations on fuzzy numbers Int. J. Syst. Sci 1978 613 626
[30] , Towards fuzzy differential calculus: Part 3. Differentiation Fuzzy Sets Syst. 1982 225 233
[31] H. Dutta, A. Akdemir and A. Atangana, Fractional order analysis: theory, methods and applications. John Wiley and Sons Ltd, Hoboken, USA (2020).
[32] , , Numerical solutions of fuzzy differential and integral equations Fuzzy Sets Syst 1999 35 48
[33] , Elementary fuzzy calculus Fuzzy Sets Syst 1986 31 43
[34] , , , Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators Chaos Solitons Fract 2020 110053
[35] , , , Computational algorithm for solving drug pharmacokinetic model under uncertainty with nonsingular kernel type Caputo-Fabrizio fractional derivative Alexandria Eng. J 2021 4347 4362
[36] , , , , , Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system Chaos Solitons Fract 2021 110506
[37] , , , Two computational approaches for solving a fractional obstacle system in Hilbert space Adv. Differ. Equ 2019 55
[38] , , , , Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system Chaos Solitons Fract 2019 109624
[39] Response functions in linear viscoelastic constitutive equations and related fractional operators Math. Model. Nat. Phenom 2019 305
[40] Fuzzy differential equations Fuzzy Sets Syst 1987 301 317
[41] , Fuzzy differential equations Proc. Int. Conf. Cybern. Soc 1978 1213 1216
[42] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations. Vol. 204 of em North-Holland Mathematics Studies. Elsevier Science (2006).
[43] , , , A study on fractional host-parasitoid population dynamical model to describe insect species Numer. Methods Partial Differ. Equ 2021 1673 1692
[44] , , On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law Math. Methods Appl. Sci 2020 443 457
[45] Fuzzy logic in control systems Fuzzy Logic Control 1990 404 18
[46] , , , Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes Appl. Comput. Math 2016 319 330
[47] , Fuzzy random variables J. Math. Anal. Appl 1986 409 422
[48] , , , Existence and uniqueness results for fractional differential equations with uncertainty Adv. Differ. Equ 2012 112
[49] , , , , , , An efficient computational approach for local fractional poisson equation in fractal media Numer. Methods Partial Differ. Equ 2021 1439 1448
[50] , , An efficient computational technique for local fractional Fokker Planck equation Physica A 2020 124525
[51] Characterizations of two different fractional operators without singular kernel Math. Model. Nat. Phenom 2019 302
[52] Fundamental solutions to the Cauchy and Dirichlet problems for a heat conduction equation equipped with the Caputo−Fabrizio differentiation Heat Conduct 2019 95 107
[53] M. Yavuz, European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels. Numer. Methods Partial Differ. Equ. (2020). https://doi.org/10.1002/num.22645.
[54] , Nonlinear regularized long-wave models with a new integral transformation applied to the fractionalderivative with power and Mittag-Leffler kernel Adv. Differ. Equ 2020 367
[55] Fuzzy sets Inf. Control 1965 338 353
[56] , , , Generalized Euler-Lagrange equations for fuzzy fractional variational problems under gH-Atangana-Baleanu differentiability J. Funct. Spaces 2018 2740678
Cité par Sources :