Alexey A. Chernov 1 ; Aleksandr A. Shemendyuk 2 ; Mark Y. Kelbert 1
@article{10_1051_mmnp_2021028,
author = {Alexey A. Chernov and Aleksandr A. Shemendyuk and Mark Y. Kelbert},
title = {Fair insurance premium rate in connected {SEIR} model under epidemic outbreak},
journal = {Mathematical modelling of natural phenomena},
eid = {34},
year = {2021},
volume = {16},
doi = {10.1051/mmnp/2021028},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021028/}
}
TY - JOUR AU - Alexey A. Chernov AU - Aleksandr A. Shemendyuk AU - Mark Y. Kelbert TI - Fair insurance premium rate in connected SEIR model under epidemic outbreak JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021028/ DO - 10.1051/mmnp/2021028 LA - en ID - 10_1051_mmnp_2021028 ER -
%0 Journal Article %A Alexey A. Chernov %A Aleksandr A. Shemendyuk %A Mark Y. Kelbert %T Fair insurance premium rate in connected SEIR model under epidemic outbreak %J Mathematical modelling of natural phenomena %D 2021 %V 16 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021028/ %R 10.1051/mmnp/2021028 %G en %F 10_1051_mmnp_2021028
Alexey A. Chernov; Aleksandr A. Shemendyuk; Mark Y. Kelbert. Fair insurance premium rate in connected SEIR model under epidemic outbreak. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 34. doi: 10.1051/mmnp/2021028
[1] Estimating the reproduction number of Ebola virus (EBOV) duringthe 2014 outbreak in West Africa PLOS Curr. Outbreaks 2014
[2] , , Geographic prioritization of distributing pandemic influenza vaccines Health Care Manag. Sci 2012 175 187
[3] N.T. Bailey, Mathematical Theory of Epidemics, Charles Griffin (1957).
[4] , , Optimal control analysis of an SIR epidemic model with constant recruitment Int. J. Appl. Math. Res 2014
[5] A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics (1994).
[6] Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir Mémoires de mathématique et de physique, presentés à l’Académie royale des sciences, par divers sçavans & lûs dans ses assemblées 1760 1 45
[7] , Space, persistence and dynamics of measles epidemics Philos. Trans. Royal Soc. London B 1995 309 320
[8] , , , Disease persistence in epidemiological models: the interplay between vaccination and migration Math. Biosci 2012 91 96
[9] , , Optimal vaccine allocation during the mumps outbreak in two SIR centres Math. Med. Biol 2019 303 312
[10] D.J. Daley and J. Gani, Epidemic Modelling: An Introduction. Cambridge Studies in Mathematical Biology, Cambridge University Press (1999).
[11] , , On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations J. Math. Biol 1990 365 382
[12] , , , Dose-optimal vaccine allocation over multiple populations Prod. Oper. Manag 2018 143 159
[13] , Actuarial applications of epidemiological models North Am. Actuarial J 2011
[14] N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunuba Perez, G. Cuomo-Dannenburg, A. Dighe, I. Dorigatti, H. Fu, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, L. Okell, S. Van Elsland, H. Thompson, R. Verity, E. Volz, H. Wang, Y. Wang, P. Walker, P. Winskill, C. Whittaker, C. Donnelly, S. Riley and A. Ghani, Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, report, Imperial College London, March 2020.
[15] Herd immunity: history, theory, practice Epidemiolog. Rev 1993 265 302
[16] The spread of epidemics Appl. Math. Comput 1988 167 171
[17] , , , , , , , Distribution of vaccine/antivirals and the ’least spread line’ in a stratified population J. Roy. Soc. Interface 2010 755 764
[18] An immunization model for a heterogeneous population Theor. Popul. Biol 1978 338 349
[19] , A contribution to the mathematical theory of epidemics Proc. Roy. Soc. A 1927 700 721
[20] , , Incidence and reproduction numbers of pertussis: estimates from serological and social contact data in five European countries PLOS Med 2010 1 10
[21] , , Modeling optimal age-specific vaccination strategies against pandemic influenza Bull. Math. Biol 2012 958 980
[22] , , Epidemic risk and insurance coverage J. Appl. Probab 2017 286 303
[23] , , , The reproductive number of COVID-19 is higher compared to SARS coronavirus J. Travel Med 2020 taaa021
[24] , , An optimization model for influenza a epidemics Math. Biosci 1978 141 157
[25] G. Macdonald, The epidemiology and control of malaria. Oxford University Press, London (1957).
[26] M. Martcheva, An Introduction to Mathematical Epidemiology. Springer US (2015).
[27] , , Optimal vaccine allocation for the early mitigation of pandemic influenza PLOS Comput. Biol 2013 1 15
[28] , Optimizing vaccine allocation at different points in time during an epidemic PLOS ONE 2010 1 11
[29] , , , Optimal allocation of pandemic influenza vaccine depends on age, risk and timing Vaccine 2008 3742 3749
[30] Properties of premium calculation principles Insurance 1986 97 101
[31] , Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 Eurosurveillance 2020
[32] R. Ross, The Prevention of Malaria, John Murray Publishing House, London (1910).
[33] , , A two-stage model for the SIR outbreak: Accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage Math. Biosci 2011 108 117
[34] , , A new view on migration processes between SIR centra: an account of the different dynamics of host and guest J. Infect. Non Infect. Dis 2015
[35] Reproduction numbers of infectious disease models Infect. Disease Model 2017 288 303
[36] , Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci 2002 29 48
[37] , , , Optimal vaccination in a stochastic epidemic model of two non-interacting populations PLOS ONE 2015 1 25
Cité par Sources :