A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 36 Cet article a éte moissonné depuis la source EDP Sciences

Voir la notice de l'article

In this paper the stability of the zero equilibrium of a system with time delay is studied. The critical case of a multiple zero root of the characteristic equation of the linearized system is treated by applying a Malkin type theorem and using a complete Lyapunov-Krasovskii functional. An application to a model for malaria under treatment considering the action of the immune system is presented.
DOI : 10.1051/mmnp/2021021

Karim Amin 1, 2 ; Irina Badralexi 1 ; Andrei Halanay 1 ; Ragheb Mghames 1, 2

1 Department of Mathematics and Informatics, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania.
2 School of Arts and Sciences, Department of Mathematics and Physics, Lebanese International University, Bekaa, Lebanon.
@article{10_1051_mmnp_2021021,
     author = {Karim Amin and Irina Badralexi and Andrei Halanay and Ragheb Mghames},
     title = {A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution},
     journal = {Mathematical modelling of natural phenomena},
     eid = {36},
     year = {2021},
     volume = {16},
     doi = {10.1051/mmnp/2021021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021021/}
}
TY  - JOUR
AU  - Karim Amin
AU  - Irina Badralexi
AU  - Andrei Halanay
AU  - Ragheb Mghames
TI  - A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021021/
DO  - 10.1051/mmnp/2021021
LA  - en
ID  - 10_1051_mmnp_2021021
ER  - 
%0 Journal Article
%A Karim Amin
%A Irina Badralexi
%A Andrei Halanay
%A Ragheb Mghames
%T A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021021/
%R 10.1051/mmnp/2021021
%G en
%F 10_1051_mmnp_2021021
Karim Amin; Irina Badralexi; Andrei Halanay; Ragheb Mghames. A stability theorem for equilibria of delay differential equations in a critical case with application to a model of cell evolution. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 36. doi: 10.1051/mmnp/2021021

[1] M. Adimy, Y. Bourfia, M.L. Hbid, C. Marquet Age-structured model of hematopoiesis dynamics with growth factor-dependent coefficients Electr. J. Differ. Equ 2016 1 20

[2] M. Adimy, F. Crauste, S. Ruan Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases Bull. Math. Biol 2006 2321 2351

[3] I. Badralexi, A. Halanay, R. Mghames A delay differential equations model for maintenance therapy in acute lymphoblastic leukemia U.P.B. Sci. Bull. Series A 2020 13 24

[4] S. Balea, A. Halanay, D. Jardan, M. Neamtu, C.A. Safta Stability analysis of a feedback model for the action of the immune system in leukemia Math. Model. Nat. Phenom 2014 108 132

[5] R. Bellman and K.L. Cooke, Differential-Difference Equations. Academic Press, New York (1963).

[6] P. Birget, M. Greischar, S. Reece, N. Mideo Altered life history strategies protect malaria parasites against drugs Evolut. Appl 2017 1 14

[7] C. Colijn, M.C. Mackey A mathematical model for hematopoiesis: I. Periodic chronic myelogenous leukemia J. Theor. Biol 2005 117 132

[8] L.E. El’sgol’ts and S.B. Norkin, Introduction to the theory of differential equations with deviating arguments (in Russian). Nauka, Moscow (1971).

[9] A. Halanay, Differential Equations. Stability, Oscillations, Time Lags. Academic Press, New York (1966).

[10] A. Halanay, D. Candea, R. Radulescu Existence and stability of limit cycles in a two-delays model of hematopoiesis including asymmetric division Math. Model. Nat. Phenom 2014 58 78

[11] J. Hale and S.M. Verduyn-Lunel, Introduction to Functional Differential Equations. Springer, New York (1993).

[12] D.H. Kerlin, M.L. Gatton Preferential Invasion by Plasmodium Merozoites and the Self-Regulation of Parasite Burden PLoS ONE 2013 e57434

[13] V.L. Kharitonov, A.P. Zhabko Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems Automatica 2003 15 20

[14] V.L. Kharitonov Time Delay Systems: Lyapunov Functionals and Matrices 2013

[15] N. Khodzhaeva, A. Baranova, A. Tokmalaev The immunological Plasmodium falciparum malaria characteristics of children in Tajikistan Republic Hindawi J. Tropical Med. 2019

[16] P. Kim, P. Lee, D. Levy A theory of immunodominance and adaptive regulation Bull. Math. Biol 2011 1645 1665

[17] B. Ma, C. Li, J. Warner Structured mathematical models to investigate the interactions between Plasmodium falciparum malaria parasites and host immune response. Math. Biosci. 2019 65 75

[18] I.G. Malkin, Theory of stability of motion (in Russian), Nauka, Moskow (1966) English translation: Atomic Energy Comm. Translation AEC-TR-3352.

[19] G. Molineux, M. Foote and S. Elliott, Erythropoiesis and Eythropoietins. Second Edition Birkhauser (2009).

[20] C. Tomasetti, D. Levi Role of symmetric and asymmetric division of stem cells in developing drug resistance PNAS 2010 16766 16771

Cité par Sources :