Hassan Khan 1 ; Rasool Shah 1 ; J.F. Gómez-Aguilar 2, 3 ; Shoaib 1 ; Dumitru Baleanu 4, 5, 6 ; Poom Kumam 7, 8
@article{10_1051_mmnp_2021016,
author = {Hassan Khan and Rasool Shah and J.F. G\'omez-Aguilar and Shoaib and Dumitru Baleanu and Poom Kumam},
title = {Travelling waves solution for fractional-order biological population model},
journal = {Mathematical modelling of natural phenomena},
eid = {32},
year = {2021},
volume = {16},
doi = {10.1051/mmnp/2021016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021016/}
}
TY - JOUR AU - Hassan Khan AU - Rasool Shah AU - J.F. Gómez-Aguilar AU - Shoaib AU - Dumitru Baleanu AU - Poom Kumam TI - Travelling waves solution for fractional-order biological population model JO - Mathematical modelling of natural phenomena PY - 2021 VL - 16 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021016/ DO - 10.1051/mmnp/2021016 LA - en ID - 10_1051_mmnp_2021016 ER -
%0 Journal Article %A Hassan Khan %A Rasool Shah %A J.F. Gómez-Aguilar %A Shoaib %A Dumitru Baleanu %A Poom Kumam %T Travelling waves solution for fractional-order biological population model %J Mathematical modelling of natural phenomena %D 2021 %V 16 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021016/ %R 10.1051/mmnp/2021016 %G en %F 10_1051_mmnp_2021016
Hassan Khan; Rasool Shah; J.F. Gómez-Aguilar; Shoaib; Dumitru Baleanu; Poom Kumam. Travelling waves solution for fractional-order biological population model. Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 32. doi: 10.1051/mmnp/2021016
[1] M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equation and inverse scattering. Cambridge University Press, New York (1991).
[2] , , , Improved (G’/G)-expansion method for the time-fractional biological population model and Cahn–Hilliard equation J. Comput. Nonlinear Dyn 2015 051016
[3] , Exact solutions of nonlinear fractional differential equations by (G’/G)-expansion method Chin. Phys. B 2013 110202
[4] (G’/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics Commun. Theor. Phys 2012 623
[5] , , , Exact solution to non-linear biological population model with fractional order Thermal Sci 2018 S317 S327
[6] , , , A review of the Adomian decomposition method and its applications to fractional differential equations Commun. Fract. Calc 2012 73 99
[7] , , Application of expfunction method for nonlinear evolution equations with variable coefficients Phys. Lett. A 2007 62 69
[8] , , Exact solutions of fractional-order biological population model Commun. Theor. Phys 2009 992
[9] Exact solutions of KdV equation for multiple collisions of solitons Phys. Rev. Lett 1971 1192 1194
[10] , A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method Chaos Solit. Fract 2018 169 177
[11] , , , Families of travelling waves solutions for fractional-order extended shallow water wave equations, using an innovative analytical method IEEE Access 2019 107523 107532
[12] N.A. Kudryashov, On one of methods for finding exact solutions of nonlinear differential equations. Preprint arXiv:1108.3288v (2011).
[13] , , On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law Math. Methods Appl. Sci 2020 443 457
[14] On types of nonlinear non-integrable equations with exact solutions Phys. Lett. A 1991 269 275
[15] Exact solutions of generalized Kuramoto. Sivashinsky equation Phys. Lett. A 1990 287 291
[16] , Extended simplest equation method for nonlinear differential equations Appl. Math. Comput 2008 396 402
[17] , , Numerical solution of the space fractional Fokker-Planck equation J. Comput. Appl. Math 2004 209 219
[18] , , , Jacobi elliptic function expansion method and periodic wave solutions of non linear wave equations Phys. Lett. A 2001 69 74
[19] , Analytical approach to linear fractional partial differential equations arising in fluid mechanics Phys. Lett. A 2006 271 279
[20] , Homotopy perturbation method for nonlinear partial differential equations of fractional order Phys. Lett. A 2007 345 350
[21] , Finite difference approximations for two-sided space-fractional partial differential equations Appl. Numer. Math 2006 80 90
[22] , , The modified extended tanh method with the Riccati equation for solving the spacetime fractional EW and MEW equations Chaos Solit. Fractals 2017 404 409
[23] , , Fractal-fractional study of the hepatitis C virus infection model Res. Phys 2020 103555
[24] , , A fractional numerical study on a chronic hepatitis C virus infection model with immune response Chaos, Solit. Fract 2020 110062
[25] , Numerical solution of a biological population model using He’s variational iteration method Comput. Math. Appl 2007 1197 209
[26] , , An efficient computational technique for local fractional Fokker Planck equation Physica A 2020 124525
[27] , , , On the local fractional wave equation in fractal strings Math. Methods Appl. Sci 2019 1588 1595
[28] , , , Some new mathematical models of the fractional-order system of human immune against IAV infection Math. Biosci. Eng 2020 4942 4969
[29] , , , , Analytical approach for fractional extended Fisher-Kolmogorov equation with Mittag-Leffler kernel Adv. Differ. Equ 2020 1 17
[30] , , The (G’/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics Phys. Lett. A 2008 417 423
[31] , The (G’/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics J. Math. Phys 2009 013502
[32] , Applications of an extended (G’/G)-expansion method to find exact solutions of nonlinear PDEs in mathematical physics Math. Probl. Eng 2010
[33] Solving STO and KD equations with modified Riemann Liouville derivative using improved (G’/G)-expansion functionmethod IAENG Int. J. Appl. Math 2015 16 22
[34] , , An improved (G’/G)-expansion method for solving nonlinear evolution equations Int. J. Comput. Math 2010 1716 25
[35] , , , New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation SIAM J. Numer. Anal 2008 1079 1095
Cité par Sources :