Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 12 Cet article a éte moissonné depuis la source EDP Sciences

Voir la notice de l'article

In this paper, we consider a two-term time-fractional diffusion-wave equation which involves the fractional orders α ∈ (1, 2) and β ∈ (0, 1), respectively. By using piecewise linear Galerkin finite element method in space and convolution quadrature based on second-order backward difference method in time, we obtain a robust fully discrete scheme. Error estimates for semidiscrete and fully discrete schemes are established with respect to nonsmooth data. Numerical experiments for two-dimensional problems are provided to illustrate the efficiency of the method and conform the theoretical results.
DOI : 10.1051/mmnp/2021007

Lijuan Nong 1 ; An Chen 1 ; Jianxiong Cao 2

1 College of Science, Guilin University of Technology, Guilin, Guangxi 541004, P.R. China.
2 School of Sciences, Lanzhou University of Technology, Lanzhou, Gansu 730050, P.R. China.
@article{10_1051_mmnp_2021007,
     author = {Lijuan Nong and An Chen and Jianxiong Cao},
     title = {Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data},
     journal = {Mathematical modelling of natural phenomena},
     eid = {12},
     year = {2021},
     volume = {16},
     doi = {10.1051/mmnp/2021007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021007/}
}
TY  - JOUR
AU  - Lijuan Nong
AU  - An Chen
AU  - Jianxiong Cao
TI  - Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021007/
DO  - 10.1051/mmnp/2021007
LA  - en
ID  - 10_1051_mmnp_2021007
ER  - 
%0 Journal Article
%A Lijuan Nong
%A An Chen
%A Jianxiong Cao
%T Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021007/
%R 10.1051/mmnp/2021007
%G en
%F 10_1051_mmnp_2021007
Lijuan Nong; An Chen; Jianxiong Cao. Error estimates for a robust finite element method of two-term time-fractional diffusion-wave equation with nonsmooth data. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 12. doi: 10.1051/mmnp/2021007

[1] M. Al-Maskari, S. Karaa Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data SIAM J. Numer. Anal 2019 1524 1544

[2] E. Bazhlekova, B. Jin, R. Lazarov, Z. Zhou An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid Numer. Math 2015 1 31

[3] A. Chen, C. Li An alternating direction Galerkin method for a time-fractional partial differential equation with damping in two space dimensions Adv. Differ. Equ 2017

[4] E. Cuesta, C. Lubich, C. Palencia Convolution quadrature time discretization of fractional diffusion-wave equations Math. Comput 2006 673 696

[5] W. Fan, X. Jiang, F. Liu, V. Anh The unstructured mesh finite element method for the two-dimensional multi-term time–space fractional diffusion-wave equation on an irregular convex domain J. Sci. Comput 2018 27 52

[6] L. Feng, F. Liu, I. Turner, L. Zheng Novel numerical analysis of multi-term time fractional viscoelastic non-newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid Fract. Calc. Appl. Anal 2018 1073 1103

[7] L. Feng, I. Turner, P. Perré, K. Burrage An investigation of nonlinear time-fractional anomalous diffusion models for simulating transport processes in heterogeneous binary media Commun. Nonlinear Sci. Numer. Simul 2020 105454

[8] M. Ferreira, M.M. Rodrigues, N. Vieira Fundamental solution of the multi-dimensional time fractional telegraph equation Fract. Calc. Appl. Anal 2017 868 894

[9] C. Fetecau, M. Athar, C. Fetecau Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate Comput. Math. Appl 2009 596 603

[10] W. Gao, P. Veeresha, H.M. Baskonus, D.G. Prakasha, P. Kumar A new study of unreported cases of 2019-nCOV epidemic outbreaks Chaos Solitons Fractals 2020 109929

[11] W. Gao, P. Veeresha, D.G. Prakasha, H.M. Baskonus, G. Yel New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function Chaos Solitons Fractals 2020 109696

[12] R. Gorenflo, Y. Luchko, M. Stojanović Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density Fract. Calc. Appl. Anal 2013 297 316

[13] B. Jin, R. Lazarov, Z. Zhou Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data SIAM J. Sci. Comput 2016 A146 A170

[14] B. Jin, B. Li, Z. Zhou Correction of high-order BDF convolution quadrature for fractional evolution equations SIAM J. Sci. Comput 2017 A3129 A3152

[15] M. Khan, K. Maqbool, T. Hayat Influence of Hall current on the flows of a generalized Oldroyd-B fluid in a porous space Acta Mech 2006 1 13

[16] C. Li, A. Chen Numerical methods for fractional partial differential equations Int. J. Comput. Methods Eng. Sci. Mech 2018 1048 1099

[17] C. Li and F. Zeng, Numerical methods for fractional calculus. Chapman and Hall/CRC, Boca Raton (2015).

[18] H. Liu, S. Lü Gauss-Lobatto-Legendre-Birkhoff pseudospectral approximations for the multi-term time fractional diffusion-wave equation with Neumann boundary conditions Numer. Methods Partial Differ. Equ 2018 2217 2236

[19] Z. Liu, F. Liu, F. Zeng An alternating direction implicit spectral method for solving two dimensional multi-term time fractionalmixed diffusion and diffusion-wave equations Appl. Numer. Math 2019 139 151

[20] C. Lubich Convolution quadrature and discretized operational calculus I. BIT Numer. Math. 1988 129 145

[21] R. Metzler, J. Klafter The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep 2000 1 77

[22] E. Orsingher, L. Beghin Time-fractional telegraph equations and telegraph processes with Brownian time Probab. Theory Relat. Fields 2004 141 160

[23] R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer Fractal mobile/immobile solute transport Water Resour. Res 2003 1296

[24] B. Shiri, D. Baleanu System of fractional differential algebraic equations with applications Chaos Solitons Fractals 2019 203 212

[25] M. Stojanović, R. Gorenflo Nonlinear two-term time fractional diffusion-wave problem Nonlinear Anal.: Real World Appl 2010 3512 3523

[26] H. Sun, X. Zhao, Z. Sun The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation J. Sci. Comput 2018 467 498

[27] V. Thomée, Galerkin finite element methods for parabolic problems, second edn. Springer, Berlin (2006).

[28] K. Wang, Z. Zhou High-order time stepping schemes for semilinear subdiffusion equations SIAM J. Numer. Anal 2020 3226 3250

[29] F. Zeng, Z. Zhang, G.E. Karniadakis Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions Comput. Methods Appl. Mech. Eng 2017 478 502

[30] M. Zheng, F. Liu, V. Anh, I. Turner A high-order spectral method for the multi-term time-fractional diffusion equations Appl. Math. Model 2016 4970 4985

Cité par Sources :