New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation
Mathematical modelling of natural phenomena, Tome 16 (2021), article no. 38.

Voir la notice de l'article provenant de la source EDP Sciences

In this research work, we successfully construct various kinds of exact traveling wave solutions such as trigonometric like, singular and periodic wave solutions as well as hyperbolic solutions to the (2+1)-dimensional Chiral nonlinear Schröginger equation (CNLSE) which is used as a governing equation to discuss the wave in the quantum field theory. The mechanisms which are used to obtain these solutions are extended rational sine-cosine/sinh-cosh and the constraint conditions for the existence of valid solutions are also given. The attained results exhibit that the proposed techniques are a significant addition for exploring several types of nonlinear partial differential equations in applied sciences. Moreover, 3D, 2D-polar and contour profiles are depicted for showing the physical behavior of the reported solutions by setting suitable values of unknown parameters.
DOI : 10.1051/mmnp/2021001

Hadi Rezazadeh 1 ; Muhammad Younis 2 ; Shafqat-Ur-Rehman 2 ; Mostafa Eslami 3 ; Muhammad Bilal 2 ; Usman Younas 2

1 Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran.
2 Punjab University College of Information Technology, University of the Punjab, Lahore 54000, Pakistan.
3 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.
@article{MMNP_2021_16_a53,
     author = {Hadi Rezazadeh and Muhammad Younis and Shafqat-Ur-Rehman and Mostafa Eslami and Muhammad Bilal and Usman Younas},
     title = {New exact traveling wave solutions to the (2+1)-dimensional {Chiral} nonlinear {Schr\"odinger} equation},
     journal = {Mathematical modelling of natural phenomena},
     eid = {38},
     publisher = {mathdoc},
     volume = {16},
     year = {2021},
     doi = {10.1051/mmnp/2021001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021001/}
}
TY  - JOUR
AU  - Hadi Rezazadeh
AU  - Muhammad Younis
AU  - Shafqat-Ur-Rehman
AU  - Mostafa Eslami
AU  - Muhammad Bilal
AU  - Usman Younas
TI  - New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation
JO  - Mathematical modelling of natural phenomena
PY  - 2021
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021001/
DO  - 10.1051/mmnp/2021001
LA  - en
ID  - MMNP_2021_16_a53
ER  - 
%0 Journal Article
%A Hadi Rezazadeh
%A Muhammad Younis
%A Shafqat-Ur-Rehman
%A Mostafa Eslami
%A Muhammad Bilal
%A Usman Younas
%T New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation
%J Mathematical modelling of natural phenomena
%D 2021
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021001/
%R 10.1051/mmnp/2021001
%G en
%F MMNP_2021_16_a53
Hadi Rezazadeh; Muhammad Younis; Shafqat-Ur-Rehman; Mostafa Eslami; Muhammad Bilal; Usman Younas. New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation. Mathematical modelling of natural phenomena, Tome 16 (2021), article  no. 38. doi : 10.1051/mmnp/2021001. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2021001/

[1] K.M. Abdul Al Woadud, D. Kumar, M.J. Islam, M. Imrulkayes, A.K. Joardar Analytic solutions of the chiral nonlinear schrödinger equations investigated by an efficient approach Int. J. Phys. Res 2019 94 99

[2] K.K. Ali, H. Rezazadeh, R.A. Talarposhti, A. Bekir New soliton solutions for resonant nonlinear Schrödinger’s equation having full nonlinearity Int. J. Mod. Phys. B 2020 2050032

[3] S. Ali, M. Younis Rogue wave solutions and modulation instability with variable coefficient and Harmonic potential Front. Phys 2020 255

[4] A. Biswas Perturbation of chiral solitons Nucl. Phys 2009 457 461

[5] A. Biswas, D. Milovic Chiral solitons with Bohm potential by He’s variational principle Phys. Atomic Nuclei 2011 781 783

[6] A. Biswas, M.O. Al-Amr, H. Rezazadeh, Mirzazadeh, M. Eslami, Q. Zhou, M. Belic Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution Optik 2018 233 239

[7] H. Bulut, T.A. Sulaiman, B. Demirdag Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations Nonlinear Dyn 2017 1985 1991

[8] N. Cheema, M. Younis New and more exact traveling wave solutions to integrable (2+1)-dimensional Maccari system Nonlinear Dyn 2016 1395 1401

[9] M.T. Darvishi, M. Najafi, A. M. Wazwaz New extended rational trigonometric methods and applications Waves Random Comp 2018 1 22

[10] G. Ebadi, A. Yildirim, A. Biswas Chiral solitons with bohm potential using G′∕G method and exp function method Rom. Rep. Phys 2012 357 366

[11] M.M.A. El-Sheikh, A.R. Seadawy, H.M. Ahmed, A.H. Arnous, W.B. Rabie Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations Physica A 2020 122662

[12] M. Eslami Trial solution technique to chiral nonlinear Schrödinger’s equation in (1+2)-dimensions Nonlinear Dyn 2016 813 816

[13] M. Eslami, M. Mirzazadeh, A. Biswas Soliton solutions of the resonant nonlinear Schrödinger’s equation in optical fibers with time dependent coefficients by simplest equation approach J. Mod. Opt 2013 1627 1636

[14] F. Ferdousa, M.G. Hafeza, A. Biswasb, M. Ekicid, Q. Zhoue, M. Alfirasf, S.P. Moshokoac, M. Belic Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp ( − ϕ(ξ))-expansion Optik 2019 439 448

[15] W. Gao, M. Senel, G. Yel, H.M. Baskonus, B. Senel New complex wave patterns to the electrical transmission line model arising innetwork system Aims. Math 2020 1881 1892

[16] W. Gao, H. Rezazadeh, Z. Pinar, H.M. Baskonus, S. Sarwar, G. Yel Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique Opt. Quant. Elect 2020 1 13

[17] D. Gianzo, J.O. Madsen, J.S. Guilln Integrable chiral theories in (2 + 1) dimensions Nucl. Phys. B 1999 586 598

[18] M. Iqbal, A.R. Seadawy, O.H. Khalil, D. Lu Propagation of long internal waves in density stratified ocean for the (2+ 1)-dimensional nonlinear Nizhnik-Novikov-Vesselov dynamical equation Res. Phys 2020 102838

[19] A. Javid, N. Raza Chiral solitons of the (1 + 2)-dimensional nonlinear Schrodinger’s equation Mod. Phy. Lett. B 2019 1950401

[20] A.G. Johnpillai, A. Yildirim, A. Biswas Chiral solitons with Bohm potential by lie group analysis and traveling wave hypothesis Rom. J. Phys 2012 545 554

[21] A. Korkmaz, O.E. Hepson, K. Hosseini, H. Rezazadeh, M. Eslami Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class J. King Saud Univ. Sci 2018 567 574

[22] D. Lu, A.R. Seadawy, M. Arshad Applications of extended simple equation method on unstable nonlinear Shrodinger’s equations Optik 2017 136 144

[23] N. Raza, A. Javid Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrödinger’s equation Waves Random Complex 2018 1 13

[24] N. Raza, U. Afzal, A.R. Butt, H. Rezazadeh Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities Opt. Quant. Elect 2019 107

[25] N. Raza, M. Abdullah, A.R. Butt Analytical soliton solutions of Biswas–Milovic equation in Kerr and non-Kerr law media Optik 2018 993 1002

[26] N. Raza, M. Abdullah, A.R. Butt, I.G. Murtaza, S. Sial New exact periodic elliptic wave solutions for extended quantum Zakharov-Kuznetsov equation Opt. Quant. Elect 2018 177

[27] N. Raza, M.R. Aslam, H. Rezazadeh Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media Opt Quant Elect 2019 59

[28] N. Raza, S. Arshed Chiral bright and dark soliton solutions of Schrödinger’s equation in (1 + 2)-dimensions Ain. Shams. Eng. J 2020 1237 1241

[29] H.U. Rehman, M. Younis, S. Jafar, M. Tahir, M.S. Saleem Optical Solitons of Biswas-Arshed Model in Birefrigent Fiber Without Four Wave Mixing Optik 2020 164669

[30] H. Rezazadeh, A. Korkmaz, M. Eslami, S.M. Mirhosseini-Alizamini A large family of optical solutions to Kundu Eckhaus model by a new auxiliary equation method Opt. Quant. Elect 2019 84

[31] K.U. Tariq, A.R. Seadawy, M. Younis, S.T.R. Rizv Dispersive traveling wave solutions to the space–time fractional equal-width dynamical equation and its applications Opt. Quant. Elect 2018 147

[32] H. Triki, R.T. Alqahtani, Q. Zhou, A. Biswas New envelope solitons for Gerdjikov-Ivanov model in nonlinear optics Superlattices Microstruct 2017 326 334

[33] B. Younas, M. Younis Chirped solitons in optical monomode fibres modelled with Chen-Lee-Liu equation Pramana - J Phys 2020 3

[34] M. Younis, T.A. Sulaiman, M. Bilal, S.U. Rehman, U. Younas Modulation instability analysis, optical and other solutions to the modified nonlinear Schrödinger equation Commun. Theor. Phys 2020 065001

[35] M. Younis, M. Bilal, S.U. Rehman, U. Younas, S.T.R. Rizvi Investigation of optical solitons in birefringent polarization preserving fibers with four-wave mixing effect Int. J. Mod. Phys. B 2020 2050113

[36] M. Younis, U. Younas, S.U. Rehman, M. Bilal, A. Waheed Optical bright-dark and Gaussian soliton with third order dispersion Optik 2017 233 238

[37] M. Younis, N. Cheema, S.A. Mahmood, S.T.R. Rizvi On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential Opt. Quant. Elect 2016 542

Cité par Sources :