Voir la notice de l'article provenant de la source EDP Sciences
Salisu M. Garba 1 ; Usman A. Danbaba 1
@article{10_1051_mmnp_2020044,
author = {Salisu M. Garba and Usman A. Danbaba},
title = {Modeling the effect of temperature variability on malaria control strategies},
journal = {Mathematical modelling of natural phenomena},
eid = {65},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020044},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020044/}
}
TY - JOUR AU - Salisu M. Garba AU - Usman A. Danbaba TI - Modeling the effect of temperature variability on malaria control strategies JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020044/ DO - 10.1051/mmnp/2020044 LA - en ID - 10_1051_mmnp_2020044 ER -
%0 Journal Article %A Salisu M. Garba %A Usman A. Danbaba %T Modeling the effect of temperature variability on malaria control strategies %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020044/ %R 10.1051/mmnp/2020044 %G en %F 10_1051_mmnp_2020044
Salisu M. Garba; Usman A. Danbaba. Modeling the effect of temperature variability on malaria control strategies. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 65. doi: 10.1051/mmnp/2020044
[1] , Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics J. Math. Biol 2017 1351 1395
[2] , , Qualitative assessment of the role of temperature variations on malaria transmission dynamics J. Biolog. Syst 2015 1550030
[3] , , Epidemic malaria and warmer temperatures in recent decades in an East African highland Proc. Roy. Soc. Lond. B 2011 1661 1669
[4] , , Mathematical modeling of sterile insect technology for control of anopheles mosquito Comput. Math. Appl 2012 374 389
[5] , , , , , , Implications of temperature variation for malaria parasite development across Africa Sci. Rep 2013 1300
[6] , , , A novel rate model of temperature-dependent development for arthropods Environ. Entomol 1999 22 29
[7] , , Charting pathways to climate change mitigation in a coupled socio-climate model PLoS Comput. Biol 2019 e1007000
[8] , , , , , , , , Impact of climate change on global malaria distribution Proc. Natl. Acad. Sci 2014 3286 3291
[9] , Dynamical models of tuberculosis and their applications Math. Biosci. Eng 2004 361 404
[10] , , Bifurcation analysis of a mathematical model for malaria transmission SIAM J. Appl. Math 2006 24 45
[11] U.A. Danbaba and S.M. Garba, Analysis of model for the transmission dynamics of Zika with sterile insect technique. In: Mathematical Methods and Models in Biosciences, edited by R. Anguelov, M. Lachowicz. Biomath Forum, Sofia, GNU General Public License, University British Columbia, Canada (2018) 81–99. https://doi.org/10.11145/texts.2018.01.083.
[12] , Modeling the transmission dynamics of Zika with sterile insect technique Math. Methods Appl. Sci 2018 8871 8896
[13] , , Malaria model with periodic mosquito birth and death rates J. Biol. Dyn 2009 430 445
[14] , , On a temporal model for the Chikungunya disease: modeling, theory and numerics Math. Biosci 2008 80 91
[15] , Vector control for the Chikungunya disease Math. Biosci. Eng 2010 313 345
[16] , , , Dynamical resonance can account for seasonality of influenza epidemics Proc. Natl. Acad. Sci 2004 16915 16916
[17] , Mathematical modeling of climate change and malaria transmission dynamics: a historical review J. Math. Biol 2018 1 77
[18] , , Backward bifurcations in dengue transmission dynamics Math. Biosci 2008 11 25
[19] , Effect of cross-immunity on the transmission dynamics of two strains of dengue Int. J. Comput. Math 2010 2361 2384
[20] , Mathematical analysis of West Nile virus model with discrete delays Acta Math. Sci 2013 1439 1462
[21] , SIRS epidemic model and simulations using different types of seasonal contact rate Syst. Anal. Model. Simul 2010 573 600
[22] , , , , , , Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax Parasites Vectors 2011 92
[23] , The type-reproduction number T in models for infectious disease control Math. Biosci 2007 3 10
[24] , , Simulation of the seasonal cycles of bird, equine and human West Nile virus cases Prevent. Veter. Med 2011 99 110
[25] , A climate-based malaria transmission model with structured vector population SIAM J. Appl. Math 2010 2023 2044
[26] , Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate Math. Biosci. Eng 2005 591 611
[27] , , , , , , , , , , Optimal temperature for malaria transmission is dramatically lower than previously predicted Ecol. Lett 2013 22 30
[28] , , Malaria transmission potential could be reduced with current and future climate change Sci. Rep 2016 27771
[29] , A mathematical model for endemic malaria with variable human and mosquito populations Math. Comput. Model 2000 747 763
[30] , Mathematical analysis of the role of repeated exposure on malaria transmission dynamics Differ. Equ. Dyn. Syst 2008 251 287
[31] , Analysis of a temperature-and rainfall-dependent model for malaria transmission dynamics Math. Biosci 2017 72 92
[32] , , Weather-driven malaria transmission model with gonotrophic and sporogonic cycles J. Biol. Dyn 2019 288 324
[33] S. Olaniyi, K.O. Okosun, O. Adesanya and E.A. Areo, Global stability and optimal control analysis of malaria dynamics in the presence of human travelers. 10 (2018) 166–186.
[34] , , , , , , , , , , Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission Philo. Trans. R. Soc. B 2015 20130551
[35] , , , , , , , , , , Public health impact and cost-effectiveness of the RT, S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models The Lancet 2016 367 375
[36] , , , , , , Explaining Usutu virus dynamics in Austria: model development and calibration Prev. Veter. Med 2008 166 186
[37] , , , A hydrologically driven model of swamp water mosquito population dynamics Ecol. Model 2006 395 404
[38] Malaria-an overview FEBS J 2007 4670 4679
[39] , Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Math. Biosci. 2002 29 48
[40] , Threshold dynamics for compartmental epidemic models in periodic environments J. Dyn. Differ. Equ 2008 699 717
[41] , , , Vaccine approaches to malaria control and elimination: Insights from mathematical models Vaccine 2015 7544 7550
[42] Malaria: World Health Organization fact-sheets. Available at http://www.who.int/news-room/fact-sheets/detail/malaria accessed on 1st August (2018).
[43] A mathematical model for malaria transmission relating global warming and local socioeconomic conditions Rev. Saude Pub 2001 224 231
Cité par Sources :