Voir la notice de l'article provenant de la source EDP Sciences
A.S. Benedito 1 ; C.P. Ferreira 1 ; M. Adimy 2
@article{10_1051_mmnp_2020041,
author = {A.S. Benedito and C.P. Ferreira and M. Adimy},
title = {Modeling the dynamics of {Wolbachia-infected} and uninfected {Aedes} aegypti populations by delay differential equations},
journal = {Mathematical modelling of natural phenomena},
eid = {76},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020041},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020041/}
}
TY - JOUR AU - A.S. Benedito AU - C.P. Ferreira AU - M. Adimy TI - Modeling the dynamics of Wolbachia-infected and uninfected Aedes aegypti populations by delay differential equations JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020041/ DO - 10.1051/mmnp/2020041 LA - en ID - 10_1051_mmnp_2020041 ER -
%0 Journal Article %A A.S. Benedito %A C.P. Ferreira %A M. Adimy %T Modeling the dynamics of Wolbachia-infected and uninfected Aedes aegypti populations by delay differential equations %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020041/ %R 10.1051/mmnp/2020041 %G en %F 10_1051_mmnp_2020041
A.S. Benedito; C.P. Ferreira; M. Adimy. Modeling the dynamics of Wolbachia-infected and uninfected Aedes aegypti populations by delay differential equations. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 76. doi: 10.1051/mmnp/2020041
[1] , , , , The wolbachia strain wau provides highly efficient virus transmission blocking in aedes aegypti PLoS Pathogens 2018 e1006815
[2] , , The impact of wolbachia, male age and mating history on cytoplasmic incompatibility and sperm transfer in drosophila simulans J. Evolut. Biol 2014 1 10
[3] , , , , Fitness of walbb wolbachia infection in aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion Am. J. Trop. Med. Hygiene 2016 507 516
[4] , Geometric stability switch criteria in delay differential systems with delay dependent parameters SIAM J. Math. Anal 2002 1144 1165
[5] , , Nicholson’s blowflies differential equations revisited: Main results and open problems Appl. Math. Model 2010 1405 1417
[6] , , Global dynamics of nicholson-type delay systems with applications Nonlinear Anal.: Real World Appl 2011 436 445
[7] , , , Ensuring successful introduction of wolbachia in natural populations of aedes aegypti by means of feedback control J. Math. Biol 2018 1269 1300
[8] , , , Implementation of control strategies for sterile insect techniques Math. Biosci 2019 43 60
[9] , Temperature affects the tripartite interactions between bacteriophage wo, wolbachia, and cytoplasmic incompatibility PLoS ONE 2011 e29106
[10] , Nicholson’s blowflies equation with a distributed delay Can. Appl. Math. Quart 2006 107 128
[11] R.A. Costello, Effects of environmental and physiological factors on the acoustic behavior of Aedes aegypti (L.) (Diptera: Culicidae). PhD thesis, University of Manitoba, Canada (1974).
[12] Models for the population dynamics of the yellow fever mosquito, Aedes aegypti J. Animal Ecol. 1984 247 268
[13] , Structured and unstructured continuous models for wolbachia infections Bull. Math. Biol 2010 2067 2088
[14] , , , Modelling wolbachia infection in a sex-structured mosquito population carrying west nile virus J. Math. Biol 2017
[15] Aedes aegypti and wolbachia interaction: population persistence in a changing environment Theor. Ecol. 2019
[16] , , Assessing the suitability of sterile insect technique applied to Aedes aegypti J. Biol. Syst. 2008 565 577
[17] The global emergence/resurgence of arboviral diseases as public health problems Arch. Med. Res 2002 330 342
[18] Roots of the transcendental equation associated with a certain difference-differential equation J. London Math. Soc 1950 226 232
[19] , , A reaction-diffusion model for controlling the Aedes aegypti with wolbachia Int. J. Contemp. Math. Sci. 2016 385 394
[20] , , , , , , , , , , , , , , , , , , , Successful establishment of wolbachia in aedes populations to suppress dengue transmission Nature 2011 454 457
[21] , , Wolbachia infection dynamics by reaction-diffusion equations Sci. China Math 2015 77 96
[22] , , , , Assessing the efficiency of wolbachia driven aedes mosquito suppression by delay differential equations J. Theor. Biol 2018
[23] , , , The impact of mating competitiveness and incomplete cytoplasmic incompatibility on wolbachia-driven mosquito population suppression Math. Biosci. Eng 2019 4741 4757
[24] , Modelling the use of wolbachia to control dengue fever transmission Bull. Math. Biol 2013
[25] , Stability criteria for a nonlinear nonautonomous system with delays Appl. Math. Model 2009 2293 2297
[26] S. Lunel and J. Hale, Introduction to functional differential equations. In Vol. 99 of Applied Mathematical Sciences. Springer-Verlag (1993).
[27] , , The invasion and coexistence of competing wolbachia strains Heredity 2003 382 388
[28] , , , , Variation in wolbachia effects on aedes mosquitoes as a determinant of invasiveness and vectorial capacity Nat. Commun 2018
[29] , , , Two-sex mosquito model for the persistence of wolbachia J. Biol. Dyn 2017 216 237
[30] , , , , , , Stable introduction of a life-shortening wolbachia infection into the mosquito Aedes aegypti Science 2009 141 144
[31] , , Modelling the introduction of wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission ANZIAM J. 2012 213 227
[32] , , Modeling the transmission of wolbachia in mosquitoes for controlling mosquito-borne diseases SIAM J. Appl. Math 2018 826 852
[33] , , Optimization of the Aedes aegypti control strategies for integrated vector management J. Appl. Math. 2015 918194
[34] , , Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review Insects 2018 158
[35] P.A. Ross, I. Wiwatanaratanabutr, J.K. Axford, V.L. White, N.M. Endersby-Harshman and A.A. Hoffmann, Wolbachia infections in aedes aegypti differ markedly in their response to cyclical heatstress (2017).
[36] I.E. Leonard T. Hillen and H. Van Roessel Partial Differential Equations: Theory and Completely Solved Problems. Wiley (2012).
[37] , , , , Heads or tails: Host-parasite interactions in the drosophila-wolbachia system Appl. Environ. Microbiol 2004 5366 5372
[38] , , , Insecticide resistance, associated mechanisms and fitness aspects in two Brazilian Stegomyia aegypti ( Med. Veterin. Entomol 2017 340 350
[39] , , , , , , , , , , , , , The WMEL wolbachia strain blocks dengue and invades caged Aedes aegypti populations Nature 2011 450 453
[40] , , Wolbachia establishment and invasion in an Aedes aegypti laboratory population Science 2005 326 328
[41] , Assessing the effects of vector control on dengue transmission Appl. Math. Comput 2008 401 413
[42] , , , , Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue Epidemiol. Infection 2009 1188 1202
[43] , , , , , , , , , , Dynamics of the ‘popcorn’ wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control Genetics 2011 583 595
Cité par Sources :