Voir la notice de l'article provenant de la source EDP Sciences
Nawal Kherbouche 1 ; Mohamed Helal 1 ; Abdennasser Chekroun 2 ; Abdelkader Lakmeche 1
@article{10_1051_mmnp_2020038,
author = {Nawal Kherbouche and Mohamed Helal and Abdennasser Chekroun and Abdelkader Lakmeche},
title = {Mathematical analysis and global dynamics for a time-delayed {Chronic} {Myeloid} {Leukemia} model with treatment},
journal = {Mathematical modelling of natural phenomena},
eid = {68},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020038},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020038/}
}
TY - JOUR AU - Nawal Kherbouche AU - Mohamed Helal AU - Abdennasser Chekroun AU - Abdelkader Lakmeche TI - Mathematical analysis and global dynamics for a time-delayed Chronic Myeloid Leukemia model with treatment JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020038/ DO - 10.1051/mmnp/2020038 LA - en ID - 10_1051_mmnp_2020038 ER -
%0 Journal Article %A Nawal Kherbouche %A Mohamed Helal %A Abdennasser Chekroun %A Abdelkader Lakmeche %T Mathematical analysis and global dynamics for a time-delayed Chronic Myeloid Leukemia model with treatment %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020038/ %R 10.1051/mmnp/2020038 %G en %F 10_1051_mmnp_2020038
Nawal Kherbouche; Mohamed Helal; Abdennasser Chekroun; Abdelkader Lakmeche. Mathematical analysis and global dynamics for a time-delayed Chronic Myeloid Leukemia model with treatment. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 68. doi: 10.1051/mmnp/2020038
[1] , , Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase Math. Biosci. Eng 2020 1329 1354
[2] , , Coupled reaction-diffusion and difference system of cell-cycle dynamics for hematopoiesis process with Dirichlet boundary conditions J. Math. Anal. Appl 2019 1030 1068
[3] , , Periodic oscillations in leukopoiesis models with two delays J. Theor. Biol 2006 288 299
[4] , Global dynamics of hematopoietic stem cells and differentiated cells in a chronic myeloid leukemia model J. Math. Biol 2010 975 997
[5] , , , , Stability analysis of PDEs modelling cell dynamics in acute myeloid leukemia in 53rd IEEE Conference on Decision and Control 2014
[6] , In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment BMC Syst. Biol 2019 1 14
[7] , Geometric stability switch criteria in delay differential systems with delay dependent parameters SIAM J. Math. Anal 2002 1144 1165
[8] , , , , , Stability analysis of a model of interaction between the immune system and cancer cells in chronic myelogenous leukemia Bull. Math. Biol 2017 1084 1110
[9] , , Long-term treatment effects in chronic myeloid leukemia J. Math. Biol 2017 733 758
[10] , , Mathematical analysis of an age structured leukemia model Commun. Appl. Nonlinear Anal 2018 1 20
[11] , , , Stability analysis of leukemia mathematical model with delay Commun. Appl. Nonlinear Anal 2020 25 57
[12] , , Chemotherapeutic treatment models by drugs with instantaneous effects Commun. Appl. Nonlinear Anal 2017 1 24
[13] , , , , , , , Implication of the autologous immune system in BCR-ABL transcript variations in chronic myelogenous leukemia patients treated with imatinib Cancer Res 2015 4053 4062
[14] , A mathematical model of hematopoiesis: II. cyclical neutropenia J. Theor. Biol 2005 133 146
[15] , , , , , Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity J. Clin. Invest 2011 396 409
[16] , Successful therapy must eradicate cancer stem cells Stem Cells 2006 2603 2610
[17] , , Stochastic dynamics of hematopoietic tumor stem cells Cell Cycle 2007 461 466
[18] , , , , Eradication of chronic Myeloid Leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to Imatinib PLOS Comput. Biol 2009 e1000503
[19] , Persistence definitions and their connections Proc. Am. Math. Soc 1990 1025 1033
[20] J.K. Hale and S.M. Verduyn Lunel, Introduction to Functional Differential Equations. Springer (1993).
[21] , , Existence and stability of steady states for a delay model of stem cells in leukemia under treatment Commun. Appl. Nonlinear Anal 2018 66 80
[22] C.H. Jerome Paillassa, KB / iKB Hematologie Onco-hematologie. Masson (2018).
[23] , , , , , , Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies Leukemia 2007 926 935
[24] , , , , Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells Blood 2007 4016 4019
[25] , , , , Mathematical models for cytarabine-derived myelosuppression in acute myeloid leukaemia PLOS ONE 2019 e0204540
[26] , , A PDE model for imatinib-treated chronic myelogenous leukemia Bull. Math. Biol 2008 1994 2016
[27] , , Oscillations in a white blood cell production model with multiple differentiation stages J. Math. Biol 2019 575 600
[28] Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics. Academic Press (1993).
[29] , Dynamical systems properties of a mathematical model for the treatment of CML Appl. Sci 2016 291
[30] , , A structured population model of clonal selection in acute leukemias with multiple maturation stages J. Math. Biol 2019 1587 1621
[31] Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis Blood 1978 941 956
[32] Quantitative approaches to analyzing imatinib-treated chronic myeloid leukemia TRENDS in Pharmacolog. Sci 2007 197 198
[33] Reply: The long-term response to imatinib treatment of CML Br. J. Cancer 2007 679 680
[34] Chronic Myeloid Leukemia Blast Crisis Arises from Progenitors Stem Cells 2007 1114 1118
[35] , , , , , , Dynamics of chronic myeloid leukaemia Nature 2005 1267 1270
[36] , , , , , , , , , , , , , , , , , , , , Nordic CML Study Group (NCMLSG). Impact of malignant stem cell burden on therapy outcome in newly diagnosed chronic myeloid leukemia patients Leukemia 2013 1520 1526
[37] , , Optimal control of treatment in a mathematical model of chronic myelogenous leukemia Math. Biosci 2007 143 156
[38] H.G. Othmer, F. Adler, M. Lewis and J. Dallon, Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology. Pearson (1997).
[39] , , Long period oscillations in a G0 model of hematopoietic stem cells SIAM J. Appl. Dyn. Syst 2005 312 332
[40] , , Optimal control analysis of a leukemia model under imatinib treatment Math. Comput. Simul 2016 1 11
[41] , , Stability and bifurcation in a model for the dynamics of stem-like cells in leukemia under treatment AIP Conf. Proc. 2012 758
[42] , , An age structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia Bull. Math. Biol. 2008 602 626
[43] , , , , , Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications Nat. Med 2006 1181 1184
[44] , , , , Optimal control of acute myeloid leukaemia J. Theor. Biol 2019 30 42
[45] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics. Springer (2011).
[46] , , , Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse J. Roy. Soc. Interface 2014 20140079
[47] , , Emergence of heterogeneity in acute leukemias Biol. Direct 2016
[48] , Mathematical modelling of leukemogenesis and cancer stem celldynamics MMNP 2012 166 202
[49] , , , , , Selection pressure exerted by imatinib therapy leads to disparate outcomes of imatinib discontinuation trials Haematologica 2012 1553 1561
Cité par Sources :