Voir la notice de l'article provenant de la source EDP Sciences
M. R. Lemnaouar 1 ; M. Khalfaoui 1 ; Y. Louartassi 1, 2 ; I. Tolaimate 1
@article{10_1051_mmnp_2020002,
author = {M. R. Lemnaouar and M. Khalfaoui and Y. Louartassi and I. Tolaimate},
title = {Fractional order prey-predator model with infected predators in the presence of competition and toxicity},
journal = {Mathematical modelling of natural phenomena},
eid = {38},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2020002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020002/}
}
TY - JOUR AU - M. R. Lemnaouar AU - M. Khalfaoui AU - Y. Louartassi AU - I. Tolaimate TI - Fractional order prey-predator model with infected predators in the presence of competition and toxicity JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020002/ DO - 10.1051/mmnp/2020002 LA - en ID - 10_1051_mmnp_2020002 ER -
%0 Journal Article %A M. R. Lemnaouar %A M. Khalfaoui %A Y. Louartassi %A I. Tolaimate %T Fractional order prey-predator model with infected predators in the presence of competition and toxicity %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020002/ %R 10.1051/mmnp/2020002 %G en %F 10_1051_mmnp_2020002
M. R. Lemnaouar; M. Khalfaoui; Y. Louartassi; I. Tolaimate. Fractional order prey-predator model with infected predators in the presence of competition and toxicity. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 38. doi: 10.1051/mmnp/2020002
[1] , On fractional order differential equations model for nonlocal epidemics Physica A 2007 607 614
[2] , , , On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rässler, Chua and Chen systems Phys. Lett. A 2006 1 4
[3] The origins and evolutions of predator-prey theory Ecology 1992 1530 1535
[4] , Modeling and analysis of a two-zooplankton one-phytoplankton system in the presence of toxicity Appl. Math. Model 2015 1241 1265
[5] Recent extentions of descartes rule of signs Ann. Math 1918 251 278
[6] , , Harvesting of a prey–predator fishery in the presence of toxicity Appl. Math. Model 2009 2282 2292
[7] A prey–predator model with a reserved area Nonlinear Anal. Model. Control 2007 479 494
[8] , , A model for fishery resource with reserve area Nonlinear Anal. Real World Appl 2003 625 637
[9] M. Edelman, Fractional maps as maps with power-law memory. Nonlinear dynamics and complexity. Springer, Cham (2014) 79–120.
[10] , Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization J. Appl. Math. Comput 2015 269 283
[11] , , , Global dynamics of a predator weaker prey and stronger prey system Appl. Math. Comput 2015 235 248
[12] A model for fishery resource with reserve area and facing prey predator interactions Can. Appl. Math. Quart 2006 385 399
[13] , , Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability Comp. Math. Appl 2010 1810 1821
[14] , , , Dynamics of a predator–prey model with harvesting and reserve area for prey in the presence of competition and toxicity J. Appl. Math. Comput 2018 305 321
[15] , , A new generalization of lemma Gronwall-Bellman Appl. Math. Sci 2012 621 628
[16] Fractional calculus in bioengineering CRC Crit. Rev. Biomed. Eng 2004 1 377
[17] Stability results for fractional differential equations with applications to control processing Proc. Comput. Eng. Syst. Appl. Multiconf 1996 963 968
[18] R.M. May, Stability and complexity in model ecosystems. Princeton University Press, Princeton, New Jersey (1973).
[19] , , , , Dispersion relations and wave operators in self-similar quasicontinuous linear chains Phys. Rev. E 2009 011135
[20] , , , A fractional order SIR epidemic model with nonlinear incidence rate Adv. Differ. Equ 2018 160
[21] K. Oldham and J. Spanier, Vol. 111 of The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elseiver, Amsterdam (1974).
[22] I. Podlubny, Vol. 198 of Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to methods of their Solution and Some of their applications. Elsevier, Amsterdam (1998).
[23] L’intégrale de Riemann-Liouville et le probléme de Cauchy Acta Math 1949 1 222
[24] , , Functions that have no First Order Derivative might have fractional derivatives of all ordersless than one Real Anal. Exchange 1994 140 157
[25] , , Asymptotic behavior of the fractional order three species prey–predator model Int. J. Nonlinear Sci. Numer. Simul 2018 721 733
[26] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications (1993).
[27] , , , Existence and survival of two competing species in a polluted environment: a mathematical model J. Biol. Syst 2001 89 103
[28] Volterra-type Lyapunov functions for fractional-order epidemic systems Commun. Nonlinear Sci. Numer. Simul 2015 75 85
[29] , Harvesting of a predator–prey model with reserve area for prey and in the presence of toxicity J. Appl. Math. Comput 2017 693 708
[30] X.Q. Zhao. Dynamical Systems in Population Biology. Springer New York (2000).
Cité par Sources :