Effects of delayed immune-activation in the dynamics of tumor-immune interactions
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 45 Cet article a éte moissonné depuis la source EDP Sciences

Voir la notice de l'article

This article presents the impact of distributed and discrete delays that emerge in the formulation of a mathematical model of the human immunological system describing the interactions of effector cells (ECs), tumor cells (TCs) and helper T-cells (HTCs). We investigate the stability of equilibria and the commencement of sustained oscillations after Hopf-bifurcation. Moreover, based on the center manifold theorem and normal form theory, the expression for direction and stability of Hopf-bifurcation occurring at tumor presence equilibrium point of the system has been derived explicitly. The effect of distributed delay involved in immune-activation on the system dynamics of the tumor is demonstrated. Numerical simulations are also illustrated for elucidating the change of dynamic behavior by varying system parameters.
DOI : 10.1051/mmnp/2020001

Parthasakha Das  1   ; Pritha Das  1   ; Samhita Das  1

1 Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur Howrah, West Bengal, India.
@article{10_1051_mmnp_2020001,
     author = {Parthasakha Das and Pritha Das and Samhita Das},
     title = {Effects of delayed immune-activation in the dynamics of tumor-immune interactions},
     journal = {Mathematical modelling of natural phenomena},
     eid = {45},
     year = {2020},
     volume = {15},
     doi = {10.1051/mmnp/2020001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020001/}
}
TY  - JOUR
AU  - Parthasakha Das
AU  - Pritha Das
AU  - Samhita Das
TI  - Effects of delayed immune-activation in the dynamics of tumor-immune interactions
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020001/
DO  - 10.1051/mmnp/2020001
LA  - en
ID  - 10_1051_mmnp_2020001
ER  - 
%0 Journal Article
%A Parthasakha Das
%A Pritha Das
%A Samhita Das
%T Effects of delayed immune-activation in the dynamics of tumor-immune interactions
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2020001/
%R 10.1051/mmnp/2020001
%G en
%F 10_1051_mmnp_2020001
Parthasakha Das; Pritha Das; Samhita Das. Effects of delayed immune-activation in the dynamics of tumor-immune interactions. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 45. doi: 10.1051/mmnp/2020001

[1] Society AC. Cancer Facts figures 2019. American Cancer Society, Atlanta, 2019.

[2] J. Adam and N. Bellomo, A Survey of Models for Tumor Immune Dynamics. Birkhauser, Boston (1997).

[3] R.P. Araujo, D.L.S. Mcelwain A history of the study of solid tumor growth: the contribution of mathematical modelling Bull. Math. Biol 2004 1039 1091

[4] S. Banerjee, S.S. Sarkar Delay-induced model for tumor-immune interaction and control of malignant tumor growth BioSystems 2008 268 288

[5] J.J. Batzel, K. Kappel Time delay in physiological systems: Analyzing and modeling its impact Math Biosci 2011 61 74

[6] P. Bi, S. Ruan Bifurcations in delay differential equations and applications to tumor and immune system interaction models SIAM J. Appl. Dyn. Syst. 2013 1847 1888

[7] P. Bi, S. Ruan, S. Zhang Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays Chaos 2014 023101

[8] G. Caravagna, A. Graudenzi Distributed delays in a hybrid model of tumor-immune system interplay Math. Biosci. Eng. 2013 37 57

[9] E. Coddington and N. Levinso Theory of ordinary differential equation. McGraw-Hill, New Delhi (1955).

[10] M. Cohn Int. Immunol 2008 1107 1118

[11] K.L. Cooke, Z. Grossman Discrete Delay, Distributed Delay and Stability Switches J Math. Anal. Appl. 1982 592 627

[12] P.S. Das, P. Das, A. Kundu Delayed feedback controller based finite time synchronization of discontinuous neural networks with mixed time-varying delays Neural Process Lett. 2018 693 709

[13] P.S. Das, P. Das, S. Das An investigation on Monod–Haldane immune response based tumor–effector–interleukin–2 interactions with treatments. Appl. Math. Comput. 2019 536 551

[14] P.S. Das, S. Mukherjee, P. Das An investigation on Michaelis-Menten kinetics based complex dynamics of tumor-immune interaction. Chaos Soliton Fractals 2019 197 305

[15] P.S. Das, P. Das, S. Mukherjee Stochastic dynamics of Michaelis-Menten kinetics based tumor-immune interactions. Physica A 2020 123603

[16] L. De Pillis, A. Radunskaya A mathemtical model with immune resistance and drug therapy: an optimal control approach J. Thor. Med 2001 79 100

[17] Y. Dong, R. Miyazaki, Y. Takeuchi Mathematical modelling on helper T-cells in a tumor immune system Discrete Contin. Dyn. Syst 2014 55 72

[18] Y. Dong, G. Huang, R. Miyazaki, Y. Takeuchi. Dynamics in a tumor immune system with time delays Appl. Math. Compt 2015 99 113

[19] A. D’Onofrioa, F. Gatti, P. Cerrai, L. Freschi Delay-induced oscillatory dynamics of tumor-immune system interaction Math. Comput. Model 2010 572 591

[20] C.W. Eurich, A. Thiel, L. Fahse Distributed Delays Stabilize Ecological Feedback Systems. Phys. Rev. Lett. 2005 158104

[21] S. Feyissa, S. Banerjee Delay-induced oscillatory dynamics in humoral mediated immune response with two time delays Nonlinear Anal. Real World Appl. 2013 35 52

[22] U. Forys Stability and bifurcations for the chronic state in Marchuk’s model of an immune system J Math. Anal. Appl 2009 922 942

[23] M. Galach Dynamics of tumor-immune system comptition-the effect of the time delay Int. J. Math. Comput. Sci 2003 395 406

[24] D. Ghosh, S. Khajanchi, S. Mangiarotti, F. Denis, S.K. Dana, C. Letellier How tumor growth can be influenced by delayed interactions between cancer cells and the microenvironment? BioSystems 2017 17 30

[25] J.K. Hale and S.M.A. Lunel, Introduction to functional Differential Equations. Springer-Verlag, New York (1993).

[26] B.D. Hassard, N.D. Kazarinoff and Y.H. Wan, Theory and Application of Hopf Bifurcation. University of Cambridge, Cambridge (1981).

[27] S. Khanjanchi Bifurcation analysis of a delayed mathematical model for tumor growth Chaos Solitons Fractals 2015 264 276

[28] S. Khajanchi, S. Banerjee Stability and bifurcation analysis of delay induced tumor immune interaction model. Appl. Math. Comput. 2014 652 671

[29] D.E. Kirschner, J.C. Panetta Modelling the immunotheraphy of tumor-immune interaction J. Math. Biol 1998 235 252

[30] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson Non-linear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 1994 295 321

[31] H. Mayer, K. Zaenker, U. Heiden A basic mathematical model of the immune response. Chaos 1995 155 161

[32] M.J. Piotrowska, M. Bodnar Influence of distributed delays on the dynamics of a generalized immune system cancerous cells interactions model Commun. Nonlinear Sci. Numer. Simul 2018 379 415

[33] M.J. Piotrowska, M. Bodnar, J. Poleszczuk, U. Forys Mathematical modelling of immune reaction against gliomas: sensivity analysis and influence of delays Nonlinear Anal. Real World Appl 2013 1601 1620

[34] F.A. Rihan, D.H.A. Rahaman, S. Lakshmanan, A.S. Alkhajeh A time delay model of tumor-immune system interactions: global dynamics, parameter estimation, sentivity analysis. Appl. Math. Comput. 2014 606 623

[35] S. Ruan, J. Wei On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discret. Impuls Syst. Ser A 2003 863 874

[36] M. Villasana, A. Radunskaya A delay differential equation model for tumor-growth. J. Math. Biol. 2003 270 294

[37] X. Yang, L. Chen, J. Cheng Parmanance and positive periodic solution for single-species non-autonomous delay diffusive model. Comput. Math. Appl. 1996 109

[38] M. Yu, Y. Dong, Y. Takeuchi Dual role of delay effects in a tumour- immune system J Biol. Dyn. 2017 334 347

Cité par Sources :