Invariant measures for interval translations and some other piecewise continuous maps
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 15
Cet article a éte moissonné depuis la source EDP Sciences

Voir la notice de l'article

We study some special classes of piecewise continuous maps on a finite smooth partition of a compact manifold and look for invariant measures for such maps. We show that in the simplest one-dimensional case (so-called interval translation maps) a Borel probability non-atomic invariant measure exists for any map. We use this result to demonstrate that any interval translation map endowed with such a measure is metrically equivalent to an interval exchange map. Finally, we study the general case of piecewise continuous maps and prove a simple result on existence of an invariant measure provided all discontinuity points are wandering.
DOI : 10.1051/mmnp/2019041

Sergey Kryzhevich  1

1 Department of Mathematical Physics, Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetskij pr. 28, Old Peterhof, 198504 St. Petersburg, Russia.
@article{10_1051_mmnp_2019041,
     author = {Sergey Kryzhevich},
     title = {Invariant measures for interval translations and some other piecewise continuous maps},
     journal = {Mathematical modelling of natural phenomena},
     eid = {15},
     year = {2020},
     volume = {15},
     doi = {10.1051/mmnp/2019041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019041/}
}
TY  - JOUR
AU  - Sergey Kryzhevich
TI  - Invariant measures for interval translations and some other piecewise continuous maps
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019041/
DO  - 10.1051/mmnp/2019041
LA  - en
ID  - 10_1051_mmnp_2019041
ER  - 
%0 Journal Article
%A Sergey Kryzhevich
%T Invariant measures for interval translations and some other piecewise continuous maps
%J Mathematical modelling of natural phenomena
%] 15
%D 2020
%V 15
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019041/
%R 10.1051/mmnp/2019041
%G en
%F 10_1051_mmnp_2019041
Sergey Kryzhevich. Invariant measures for interval translations and some other piecewise continuous maps. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 15. doi: 10.1051/mmnp/2019041

[1] M. Boshernitzan, I. Kornfeld Interval translation mappings Ergodic Theory Dyn. Syst 1995 821 832

[2] H. Bruin Renormalization in a class of interval translation maps of d branches Dyn. Syst 2007 11 24

[3] H. Bruin, G. Clack Inducing and unique ergodicity of double rotations Discrete Contin. Dyn. Syst 2012 4133 4147

[4] H. Bruin, S. Troubetzkoy The Gauss map on a class of interval translation mappings Israel J. Math 2003 125 148

[5] J Buzzi Piecewise isometries have zero topological entropy Ergodic Theory Dyn. Syst 2001 1371 1377

[6] J. Buzzi, P Hubert Piecewise monotone maps without periodic points: Rigidity, measures and complexity Ergodic Theory Dyn. Syst 2004 383 405

[7] X.-C. Fu, J. Duan Global attractors and invariant measures for non-invertible planar piecewise isometric maps Phys. Lett. A 2007 285 290

[8] A Goetz Sofic subshifts and piecewise isometric systems Ergodic Theory Dyn. Syst 1999 1485 1501

[9] A Goetz Dynamics of piecewise isometries Illinois J. Math 2000 465 478

[10] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press (1997).

[11] B. Pires, Invariant measures for piecewise continuous maps. Preprint arXiv:1603.02542 (2016).

[12] J. Schmeling and S. Troubetzkoy, Interval Translation Mappings. In Dynamical systems (Luminy-Marseille) (1998) 291–302.

[13] H. Suzuki, S. Ito, K. Aihara Double rotations Discrete Contin. Dyn. Syst 2005 515 532

[14] S. Truong, Dynamics of piecewise translation maps. Preprint arXiv:1610.04700 (2017).

[15] M. Viana Ergodic theory of interval exchange maps Rev. Matem. Complut 2006 7 100

[16] D. Volk Almost every interval translation map of three intervals is finite type Discrete Continu. Dyn. Syst. A 2014 2307 2314

[17] D. Volk, Attractors of Piecewise Translation Maps. Preprint arXiv:1708.03780 (2017).

[18] J.-C. Yoccoz, Continued Fraction Algorithms for Interval Exchange Maps: an Introduction. Available on: https://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL13956˙yoccoz.pdf (2020).

[19] C. Zhan-He, Y. Rong-Zhong, F. Xin-Chu Invariant measures for planar piecewise isometries J. Shanghai Univ. (Engl. Ed.) 2010 174 176

Cité par Sources :