Voir la notice de l'article provenant de la source EDP Sciences
Elena Piretto 1, 2 ; Marcello Delitala 1 ; Mario Ferraro 3
@article{10_1051_mmnp_2019031,
author = {Elena Piretto and Marcello Delitala and Mario Ferraro},
title = {Efficiency of cancer treatments: in silico experiments},
journal = {Mathematical modelling of natural phenomena},
eid = {19},
publisher = {mathdoc},
volume = {15},
year = {2020},
doi = {10.1051/mmnp/2019031},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019031/}
}
TY - JOUR AU - Elena Piretto AU - Marcello Delitala AU - Mario Ferraro TI - Efficiency of cancer treatments: in silico experiments JO - Mathematical modelling of natural phenomena PY - 2020 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019031/ DO - 10.1051/mmnp/2019031 LA - en ID - 10_1051_mmnp_2019031 ER -
%0 Journal Article %A Elena Piretto %A Marcello Delitala %A Mario Ferraro %T Efficiency of cancer treatments: in silico experiments %J Mathematical modelling of natural phenomena %D 2020 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2019031/ %R 10.1051/mmnp/2019031 %G en %F 10_1051_mmnp_2019031
Elena Piretto; Marcello Delitala; Mario Ferraro. Efficiency of cancer treatments: in silico experiments. Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 19. doi: 10.1051/mmnp/2019031
[1] , , Metronomics: towards personalized chemotherapy? Nat. Rev. Clin. Oncol. 2014 413 431
[2] , , On the foundations of cancer modelling: selected topics, speculations, and perspectives Math. Models Methods Appl. Sci 2008 593 646
[3] , , , , , Stability analysis of a model of interaction between the immune system and cancer cells in cml Bull. Math. Biol 2017 1084 1110
[4] , , Mathematical model of pulsed immunotherapy for superficial bladder cancer Bull. Math. Biol 2008 2055 2076
[5] Optimization of an in vitro chemotherapy to avoid resistant tumours J. Theor. Biol 2017 24 33
[6] , A mathematical tumor model with immune resistance and drug therapy: an optimal control approach Comput. Math. Methods Med 2001 79 100
[7] , , Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations J. Theor. Biol 2006 841 862
[8] , The use of drugs in combination for the treatment of cancer: rationale and results New England J. Med 1973 998 1006
[9] A. D’Onofrio, U. Ledzewicz and H. Schättler, On the dynamics of tumor-immune system interactions and combined chemo-and immunotherapy, in New Challenges for Cancer Systems Biomedicine. Springer, Berlin (2012) 249–266.
[10] , , Interactions between the immune system and cancer: a brief review of non-spatial mathematical models Bull. Math. Biol 2011 2 32
[11] , , , A dynamical model of tumour immunotherapy Math. Biosci 2014 50 62
[12] , , Lessons from applied ecology: cancer control using an evolutionary double bind Cancer Res 2009 7499 7502
[13] , How darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine Br. J. Cancer 2010 1139 1143
[14] , , , , , , , Study of metastatic kinetics in metastatic melanoma treated with b-raf inhibitors: introducing mathematical modelling of kinetics into the therapeutic decision PloS One 2017 e0176080
[15] , , Evolution of ibrutinib resistance in chronic lymphocytic leukemia (cll) Proc. Natl. Acad. Sci 2014 13906 13911
[16] , , , Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis Bull. Math. Biol 1994 295 321
[17] The perfect blend Nature 2016 162 164
[18] , Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models? Cancer Lett. 2017 74 80
[19] , , , , , On drug resistance and metronomic chemotherapy: a mathematical modeling and optimal control approach Math. Biosci. Eng 2017 217 235
[20] , , , How regulatory cd25+cd4+t cells impinge on tumor immunobiology? On the existence of two alternative dynamical classes of tumors J. Theor. Biol 2007 122 137
[21] , , , , Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies ESAIM: M2AN 2013 377 399
[22] , , Normalizing function of tumor vessels: Progress, opportunities, and challenges Ann. Rev. Physiol 2019 505 534
[23] , , , , , , , , , Molecular and cellular pharmacology of the hypoxia-activated prodrug th-302 Mol. Cancer Ther 2012 740 751
[24] , , , , , , , , The impact of microenvironmental heterogeneity on the evolution of drug resistance in cancer cells Cancer Inform 2015 19 31
[25] J.D. Murray, Mathematical Biology. Springer-Verlag, Berlin (2002).
[26] , , Combination therapies and intra-tumoral competition: insights from mathematical modelling J. Theor. Biol 2018 149 159
[27] , , How combination therapies shape drug resistance in heterogeneous tumoral populations Lett. Biomath 2018 S160 S177
[28] , , , Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy J. Math. Pures. Appl 2018 268 308
[29] , , , , , , , , Chemotherapy enhances tumor cell susceptibility to ctl-mediated killing during cancer immunotherapy in mice J. Clin. Investig 2010 1111
[30] , , , , , , , Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives EMBO Mol. Med 2012 675 684
[31] , , , , , , , , Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy Cancer Res 2016 4931 4940
[32] , , , , , , , , Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy Cancer Res 2005 7045 7051
[33] Chemotherapy and immunotherapy combination in advanced prostate cancer Clin. Adv. Hematol. Oncol 2012 90 100
[34] , , Emergence of heterogeneity in acute leukemias Biol. Direct 2016 51
[35] , Tumorigenesis: it takes a village Nature Rev. Cancer 2015 473 483
[36] , A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy Bull. Math. Biol 2012 1485 1500
Cité par Sources :