Viscous fingering in the presence of weak disorder
Mathematical modelling of natural phenomena, Tome 15 (2020), article no. 2

Voir la notice de l'article provenant de la source EDP Sciences

We consider the problem of viscous fingering in the presence of quenched disorder, that is both weak and short-range correlated. The two-point correlation function of the harmonic measure is calculated perturbatively, and is used in order to calculate the correction and the box-counting fractal dimension. We show that the disorder increases the fractal dimension, and that its effect decreases logarithmically with the size of the fractal.
DOI : 10.1051/mmnp/2018055

Eldad Bettelheim 1 ; Oded Agam 1

1 Racah Institute of Physics, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem 91904, Israel
@article{10_1051_mmnp_2018055,
     author = {Eldad Bettelheim and Oded Agam},
     title = {Viscous fingering in the presence of weak disorder},
     journal = {Mathematical modelling of natural phenomena},
     eid = {2},
     publisher = {mathdoc},
     volume = {15},
     year = {2020},
     doi = {10.1051/mmnp/2018055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2018055/}
}
TY  - JOUR
AU  - Eldad Bettelheim
AU  - Oded Agam
TI  - Viscous fingering in the presence of weak disorder
JO  - Mathematical modelling of natural phenomena
PY  - 2020
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2018055/
DO  - 10.1051/mmnp/2018055
LA  - en
ID  - 10_1051_mmnp_2018055
ER  - 
%0 Journal Article
%A Eldad Bettelheim
%A Oded Agam
%T Viscous fingering in the presence of weak disorder
%J Mathematical modelling of natural phenomena
%D 2020
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/2018055/
%R 10.1051/mmnp/2018055
%G en
%F 10_1051_mmnp_2018055
Eldad Bettelheim; Oded Agam. Viscous fingering in the presence of weak disorder. Mathematical modelling of natural phenomena, Tome 15 (2020), article  no. 2. doi: 10.1051/mmnp/2018055

[1] O. Alekseev, M. Mineev-Weinstein Theory of stochastic Laplacian growth J. Stat. Phys 2017 68 91

[2] R. Cafiero, A. Gabrielli, M. Marsili, L. Pietronero, L. Torosantucci Laplacian Fractal Growth in Media with Quenched Disorder Phys. Rev. Lett. 1997 1503

[3] V. Cornette, P.M. Cantres, A.J. Ramirez-Pastor, F. Nieto Diffusion-limited aggregates grown on nonuniform substrates Physica A 2013 5879

[4] M. Eden, A Two-dimensional Growth Process. In Vol. 4 of Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley (1961) 223–239.

[5] B. Gustafsson, R. Teodorescu and A. Vasil’ev, Classical and Stochastic Laplacian Growth. Springer, Basel (2014).

[6] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B. Shraiman Fractal measures and their singularities: The characterization of strange sets Phys. Rev. A 1986 1141

[7] H.J.S. Hele-Shaw The Flow of Water Nature 1898 34 36

[8] A. Hernàndez-Machado, J. Soriano, A. M. Lacasta, M.A. Rodríguez, L. Ramírez-Piscina, J. Ortín Interface roughening in Hele-Shaw flows with quenched disorder: Experimental and theoretical results Europhys. Lett 2001 194 200

[9] M.H. Jensen, A. Levermann, J. Mathiesen, I. Procaccia Multifractal structure of the harmonic measure of diffusion-limited aggregates Phys. Rev. E 2002 046109

[10] S.M. Kogan, A.Y. Shul’Man Theory of fluctuations in a nonequilibrium JETP 1969 467

[11] S.M. Kogan, A.Y. Shul’Man Theory of fluctuations in a nonequilibrium electron gas Zh. Eksp. Teor. Fiz. 1969 862 876

[12] K.B. Lauritsen, M. Sahimi, H. Herrman Phys. Rev. E 1993 1272

[13] P. Meakin Phys. Rev. B 1984 4327

[14] P. Meakin, M. Murat, A. Aharony, J. Feder, T. Jøssang Diffusion-limited aggregates near the percolation threshold Phys. A 1989 1 20

[15] M. Murat, A. Aharony Phys. Rev. Lett 1986 1875

[16] E. Pauné, J. Casademunt Phys. Rev. Lett 2003 144504

[17] P.G. Saffman, G.I. Taylor Proc. R. Soc. Lond. A 1958 312

[18] L.M. Sander Contemp. Phys 2000 203 218

[19] J. Soriano, J. Ortín, A. Hernàndez-Machado Phys. Rev. E 2002 031603

[20] J. Soriano, J.J. Ramasco, M.A. Rodríguez, A. Hernàndez-Machado, J. Ortín Anomalous Roughening of Hele-Shaw Flows with Quenched Disorder Phys. Rev. Lett 2002 026102

[21] R. Toussaint, G. Løvoll, Y. Méheust, K.J. Måløy, J. Schmittbuhl Europhys. Lett. 2005 583 589

Cité par Sources :