Voir la notice de l'article provenant de la source EDP Sciences
G. Bocharov 1 ; A. Bouchnita 2, 3, 4, 5 ; J. Clairambault 6, 7 ; V. Volpert 4, 5, 8
@article{10_1051_mmnp_201611601,
author = {G. Bocharov and A. Bouchnita and J. Clairambault and V. Volpert},
title = {Mathematics of {Pharmacokinetics} and {Pharmacodynamics:} {Diversity} of {Topics,} {Models} and {Methods}},
journal = {Mathematical modelling of natural phenomena},
pages = {1--8},
publisher = {mathdoc},
volume = {11},
number = {6},
year = {2016},
doi = {10.1051/mmnp/201611601},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611601/}
}
TY - JOUR AU - G. Bocharov AU - A. Bouchnita AU - J. Clairambault AU - V. Volpert TI - Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods JO - Mathematical modelling of natural phenomena PY - 2016 SP - 1 EP - 8 VL - 11 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611601/ DO - 10.1051/mmnp/201611601 LA - en ID - 10_1051_mmnp_201611601 ER -
%0 Journal Article %A G. Bocharov %A A. Bouchnita %A J. Clairambault %A V. Volpert %T Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods %J Mathematical modelling of natural phenomena %D 2016 %P 1-8 %V 11 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611601/ %R 10.1051/mmnp/201611601 %G en %F 10_1051_mmnp_201611601
G. Bocharov; A. Bouchnita; J. Clairambault; V. Volpert. Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 6, pp. 1-8. doi: 10.1051/mmnp/201611601
[1] , , , Parameter estimation using unidentified individual data in individual based models Math. Model. Nat. Phenom. 2016 9 27
[2] , Physiologically structured cell population dynamic models with applications to combined drug delivery optimisation in oncology Math. Model. Nat. Phenom. 2016 45 70
[3] , , , , , An individualized blood coagulation model to predict INR therapeutic range during warfarin treatment Math. Model. Nat. Phenom. 2016 28 44
[4] , Reaction mechanisms and kinetic constants used in mechanistic models of coagulation and fibrinolysis Math. Model. Nat. Phenom. 2016 71 90
[5] , , Computational modeling of quiescent platelet energy metabolism in the context of whole-body glucose turnover Math. Model. Nat. Phenom. 2016 91 101
[6] P. Macheras, A. Iliadis, Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics, Homogeneous and Heterogeneous Approaches. Springer, (2006), 293–308.
[7] , , , , , , , , , , , , , , , , Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues Proc Natl Acad Sci U S A 2014 2307 2312
[8] , , , , , , , , , , , , , , , Persistent HIV-1 replication maintains the tissue reservoir during therapy Nature 2016 51 56
[9] , , , , , , , , , , , , , , , , , , , , , B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers Nat Med. 2015 132 139
[10] , A drug-free zone–lymph nodes as a safe haven for HIV Cell Host Microbe 2016 275 276
[11] , , , , , Reaction-diffusion modelling of interferon distribution in secondary lymphoid organs Math. Model. Nat. Phenom. 2011 13 26
[12] , , , , , Simulation of the interferon-mediated protective field in lymphoid organs with their spatial and functional organization taken into consideration Doklady Biological Sciences 2011 194 196
[13] , , Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence Nature Reviews Immunology. 2008 764 775
[14] , The microanatomy of T-cell responses Immunological Reviews 2008 26 43
[15] , , , , , , , A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections PLoS Pathogens 2010 e1001017
[16] J. Keener, J. Sneyd. Mathematical Physiology. Springer-Verlag, New York, 2009.
[17] , , , , , , , Data-driven modelling of the FRC network for studying the fluid flow in the conduit system Engineering Applications of Artificial Intelligence 2016
[18] , , , , Modeling lymph flow and fluid exchange with blood vessels in lymph nodes Lymphatic research and biology 2015 234 247
[19] , , , , Computational approach to 3D modeling of the lymph node geometry Computation 2015 222 234
[20] , , , , An image-based model of fluid flow through lymph nodes Bull. Math. Biol. 2016 52 71
[21] , Designing proliferating cell population models with functional targets for control by anti-cancer drugs Discrete and Continuous Dynamical Systems - Series B 2013 865 889
[22] , , , , Age-structured cell population model to study the influence of growth factors on cell cycle dynamics Mathematical Biosciences and Engineering 2013 1 17
[23] F. Billy, J. Clairambault, Q. Fercoq. Optimisation of cancer drug treatments using cell population dynamics. In: A. Friedman, E. Kashdan, U. Ledzewicz, H. Schättler (eds.) Mathematical Models and Methods in Biomedicine, Lecture Notes on Mathematical Modelling in the Life Sciences, 265–309. Springer, New York, 2013.
[24] , , , , , , Synchronisation and control of proliferation in cycling cell population models with age structure Mathematics and Computers in Simulation 2014 66 94
[25] Deterministic mathematical modelling for cancer chronotherapeutics: cell population dynamics and treatment optimisation "Mathematical Oncology 2013” 265 294 2014
[26] , , , , Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies ESAIM: Mathematical Modelling and Numerical Analysis 2013 377 399
[27] , , , , Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors Bull. Math. Biol. 2015 1 22
[28] Haematology: blood coagulation The Lancet 2000 1627 1632
[29] L. de Pillis, E.J. Graham, K. Hood, Y. Ma, A. Radunskaya, J. Simons. Injury-initiated clot formation under flow: a mathematical model with warfarin treatment. In: Applications of Dynamical Systems in Biology and Medicine, 75–98. Springer New York, 2015.
[30] , Simulated thrombin generation in the presence of surface-bound heparin and circulating tissue factor Annals of Biomedical Engineering 2016 1072 1084
[31] , , A comprehensive model for the humoral coagulation network in humans Clinical Pharmacology and Therapeutics 2009 290 298
[32] , , , , , , Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation PLoS One 2011 e17626
[33] , , A mathematical model of lipid-mediated thrombin generation Mathematical Medicine and Biology 2003 105 129
[34] , , , A model for the stoichiometric regulation of blood coagulation Journal of Biological Chemistry 2002 18322 18333
[35] , , , , , , Computational investigation of potential dosing schedules for a switch of medication from warfarin to rivaroxaban-an oral, direct Factor Xa inhibitor Frontiers in Physiology 2013 417 417
[36] , , A systems pharmacology model for predicting effects of factor Xa inhibitors in healthy subjects: assessment of pharmacokinetics and binding kinetics CPT: Pharmacometrics & Systems Pharmacology 2015 650 659
[37] , , , , , , 2016 The modification of the thrombin generation test for the clinical assessment of dabigatran etexilate efficiency Scientific Reports
[38] , , , , Computer-aided dosage in oral anticoagulation therapy using phenprocoumon H'´amostaseologie 2010 183 189
[39] , , Scale reduction of a systems coagulation model with an application to modeling pharmacokinetic-pharmacodynamic data CPT: Pharmacometrics & Systems Pharmacology 2014 1 8
[40] D. Luan. Computational modeling and simulation of thrombus formation. Doctoral dissertation, Cornell University, 2009.
[41] , Advances in risk-benefit evaluation using probabilistic simulation methods: an application to the prophylaxis of deep vein thrombosis Journal of Clinical Epidemiology 2004 795 803
[42] , , , , , , Improvement of spatial fibrin formation by the anti-TFPI aptamer BAX499: changing clot size by targeting extrinsic pathway initiation Journal of Thrombosis and Haemostasis 2011 1825 1834
[43] Models for thrombin generation and risk of disease Journal of Thrombosis and Haemostasis 2013 212 223
[44] , , , , , Thrombin generation in rheumatoid arthritis: dependence on plasma factor composition Thrombosis and Haemostasis 2010 224 230
[45] , Systems biology of the microvasculature Integrative Biology 2015 498 512
[46] , , , , Thrombin generation profiles in deep venous thrombosis Journal of Thrombosis and Haemostasis 2015 2497 2505
[47] , , , Hybrid approach to model the spatial regulation of T cell responses BMC Immunology 2016
[48] , , , , , A global "imaging’’ view on systems approaches in immunology Eur J Immunol. 2012 3116 3125
[49] Impact of modeling and simulation: myth or fact? Clin. Pharmacol. Ther. 2014 413 415
[50] What happened to the modeling and simulation revolution? Clin. Pharmacol. Ther. 2014 416 417
[51] , , , , , , , , , , Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia N. Engl. J. Med. 2001 1031 1037
[52] T. Haferlach. Molecular genetic pathways as therapeutic targets in AML. In: Educational book, ASH 2008 meeting, 400–411, 2008.
[53] , , Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation Biochimica et Biophysica Acta 2016 2627 2645
[54] B. Brutovsky, D. Horvath. Structure of intratumor heterogeneity: Is cancer hedging its bets? arXiv, 1307.0607, 2013.
[55] , , , , , , Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation Cancer Res. 2015 930 939
[56] , , , , , , , , , , Ancient hot and cold genes and chemotherapy resistance emergence Proc. Nat. Acad. Sci. USA 2015 10467 10472
Cité par Sources :