@article{10_1051_mmnp_201611507,
author = {M. Banerjee and L. Zhang},
title = {Stabilizing {Role} of {Nonlocal} {Interaction} on {Spatio-temporal} {Pattern} {Formation}},
journal = {Mathematical modelling of natural phenomena},
pages = {103--118},
year = {2016},
volume = {11},
number = {5},
doi = {10.1051/mmnp/201611507},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611507/}
}
TY - JOUR AU - M. Banerjee AU - L. Zhang TI - Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation JO - Mathematical modelling of natural phenomena PY - 2016 SP - 103 EP - 118 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611507/ DO - 10.1051/mmnp/201611507 LA - en ID - 10_1051_mmnp_201611507 ER -
%0 Journal Article %A M. Banerjee %A L. Zhang %T Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation %J Mathematical modelling of natural phenomena %D 2016 %P 103-118 %V 11 %N 5 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611507/ %R 10.1051/mmnp/201611507 %G en %F 10_1051_mmnp_201611507
M. Banerjee; L. Zhang. Stabilizing Role of Nonlocal Interaction on Spatio-temporal Pattern Formation. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 103-118. doi: 10.1051/mmnp/201611507
[1] , , , Spatial structures and generalized travelling waves for an integro-differential equation DCDS B 2010 537 557
[2] , Existence and non-existence of spatial patterns in a ratio-dependent predator-prey model Ecol. Comp. 2015 199 214
[3] , Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model Math. Biosci. 2012 64 76
[4] , Self-organized spatial patterns and chaos in a ratio-dependent predator-prey system Theor. Ecol. 2011 37 53
[5] M. Banerjee, M. Sen, V. Volpert. Pattern formation in a prey-predator model with nonlocal interaction terms. In “Applied Analysis with Application in Biological and Physical Sciences”, Springer, In press, 2016.
[6] , Prey-predator model with a nonlocal consumption of prey Chaos 2016 083120
[7] M. Banerjee, V. Volpert. Spatio-temporal pattern formation in Rosenzweig-Macarthur model: effect of nonlocal interactions. (under review) (2016).
[8] , , Mathematics of Darwin’s diagram Math. Model. Nat. Phenom. 2014 5 25
[9] Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model SIAM J. Appl. Math. 1990 1663 1688
[10] , , Pattern and waves for a model in population dynamics with nonlocal consumption of resources Math. Model. Nat. Phenom. 2006 63 80
[11] Y. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer-Verlag, New York 2004.
[12] Spatio-temporal pattern formation in nonlinear nonequilibrium plankton dynamics Proc. Royal Soc. London B 1993 103 109
[13] , , , , Spatiotemporal complexity of plankton and fish dynamics SIAM Rev 2002 311 370
[14] , Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition Theor. Pop. Biol. 2011 289 297
[15] , Selection and stability of wave trains behind predator invasions in a model with non-local prey competition IMA J. Appl. Math. 2015 1155 1177
[16] J. D. Murray. Mathematical Biology II. Springer-Verlag, Heidelberg (2002).
[17] R. Nathan, E. Klein, J. J. Robledo-Arnuncio. Dispersal kernels: Review, in Dispersal Ecology and Evolution. J. Clobert, M. Baguette, T. G. Benton, and J. M. Bullock, (Eds.), Oxford University Press, Oxford, UK, (2012) 187–210.
[18] A. Okubo, S. Levin. Diffusion and Ecological Problems: Modern Perspectives. Springer, Berlin 2001.
[19] Perko, L. Differential Equations and Dynamical Systems. Springer, New York, 2001.
[20] , , Pattern formation in a model of competing populations with nonlocal interactions Phys. D 2013 12 23
[21] Periodic traveling waves in integro-differential equations for nonlocal dispersal SIAM J. Appl. Dyna. Sys. 2014 1517 1541
[22] , , , Stability and pattern formation for competing populations with asymmetric nonlocal coupling Math. Biosci. 2013 14 26
[23] Elliptic Partial Differential Equations Reaction-diffusion Equations Birkhauser 2014
Cité par Sources :