R. Eftimie 1 ; C.K. Macnamara 2 ; Jonathan Dushoff 3, 4 ; J.L. Bramson 4, 5 ; D.J.D. Earn 6
@article{10_1051_mmnp_201611505,
author = {R. Eftimie and C.K. Macnamara and Jonathan Dushoff and J.L. Bramson and D.J.D. Earn},
title = {Bifurcations and {Chaotic} {Dynamics} in a {Tumour-Immune-Virus} {System}},
journal = {Mathematical modelling of natural phenomena},
pages = {65--85},
year = {2016},
volume = {11},
number = {5},
doi = {10.1051/mmnp/201611505},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611505/}
}
TY - JOUR AU - R. Eftimie AU - C.K. Macnamara AU - Jonathan Dushoff AU - J.L. Bramson AU - D.J.D. Earn TI - Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System JO - Mathematical modelling of natural phenomena PY - 2016 SP - 65 EP - 85 VL - 11 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611505/ DO - 10.1051/mmnp/201611505 LA - en ID - 10_1051_mmnp_201611505 ER -
%0 Journal Article %A R. Eftimie %A C.K. Macnamara %A Jonathan Dushoff %A J.L. Bramson %A D.J.D. Earn %T Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System %J Mathematical modelling of natural phenomena %D 2016 %P 65-85 %V 11 %N 5 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611505/ %R 10.1051/mmnp/201611505 %G en %F 10_1051_mmnp_201611505
R. Eftimie; C.K. Macnamara; Jonathan Dushoff; J.L. Bramson; D.J.D. Earn. Bifurcations and Chaotic Dynamics in a Tumour-Immune-Virus System. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 5, pp. 65-85. doi: 10.1051/mmnp/201611505
[1] , , Models of immune memory: on the role of cross-reactive stimulation, competition, and homeostasis in maintaining immune memory Proc. Natl. Acad. Sci. USA 1998 14926 14931
[2] , A history of the study of solid tumor growth: the contribution of mathematical modeling Bull. Math. Biol. 2004 1039 1091
[3] , , , , Modeling of cancer virotherapy with recombinant measles viruses J. Theor. Biol. 2008 109 122
[4] Primer: making sense of T-cell memory Nature Clinical Practice 2008 43 49
[5] , , , Solid tumors “melt” from the inside after successful CD8 T cell attack Eur. J. Immunol 2006 468 477
[6] , , , , The control of chaos: theory and applications Physics Reports 2000 103 197
[7] , , , , , , , , , , , , , , Model-based rational design of an oncolytic virus with improved therapeutic potential Nat. Commun. 2013 1974
[8] , Cancer stem cells: a step toward the cure J. Clin. Oncol. 2008 2795 2799
[9] , , , , , , , , , , , , Targeted inammation during oncolytic virus therapy severely compromises tumour blood ow Mol. Ther. 2007 1686 1693
[10] , , , , , , , , , Potentiating cancer immunotherapy using an oncolytic virus Mol. Ther. 2010 1430 1439
[11] , , , Blood clearance rates of P32-labeled Vesicular Stomatitis and Newcastle disease viruses by the reticuloendothelial system in mice J. Immunol. 1960 99 105
[12] K.W. Brunson, G.L. Nicholson. Experimental brain metastasis. Brain metastasis (L. Weiss, H.A. Gilbert, J.B. Posner, eds.) Springer 1980, 50–65.
[13] , , Mathematical model of BCG immunotherapy in superficial bladder cancer Bull. Math. Biol. 2007 1847 1870
[14] , , Macrophage-tumor interactions: In vivo dynamics Discrete and Continuous dynamical systems - Series B 2004 81 98
[15] Oncolytic immunotherapy: an emerging new modality for the treatment of cancer Annals of Oncology 2016 1 4
[16] , , , , , CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool? J. Translat. Med. 2009 102
[17] , , , , , , , PEGylation of a Vesicular Stomatitis Virus G pseudotyped lentivirus vector prevents inactivation in serum J. Virol. 2004 912 921
[18] The relevance of non-linear mathematics (chaos theory) to the treatment of cancer, the role of the immune response and the potential for vaccines QJM 1999 347 359
[19] , , A model of dendritic cell therapy for melanoma Frontiers in Oncology 2013 56
[20] , , A validated mathematical model of cell-mediated immune response to tumor growth Cancer. Res. 2005 7950 7958
[21] , The intracellular half-lives of nonreplicanting nucleocapsids of di particles of wild type and mutant strains of vesicular stomatitis virus Virology 1986 371 378
[22] , , , , , , , Dynamics of multiple myeloma tumor therapy with a recombinant measles virus Cancer Gene Ther. 2009 873 882
[23] , , , , , , , , Differential innate immune responses to low or high dose of oral SIV challenge in Rhesus macaques Curr. HIV Res. 2011 276 288
[24] , , A high number of tumor-infiltrating lymphocytes are associated with a small tumour size, low tumour stage and a favourable prognosis in operated small cell lung carcinoma Clin. Cancer Res. 2000 1875 1881
[25] , , Interactions between the immune system and cancer: a brief review of non-spatial mathematical models Bull. Math. Biol. 2010 2 32
[26] , , Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma J. Theor. Biol. 2010 467 480
[27] , , , , Multi-stability and multi-instability phenomena in a mathematical model of tumor-immune-virus interactions Bull. Math. Biol. 2011 2932 2961
[28] , On the growth rates of human malignant tumours: implications for medical decision making J. Surgical Oncology 1997 284 297
[29] , , Innate and adaptive immune cells in the timor microenvironment Nat. Immunol. 2013 1014 1022
[30] , , , Tumor development under angiogenic signalling: a dynamical theory of tumor growth, treatment response, and post vascular dormancy Cancer Res. 1999 4770 4775
[31] , Engineering a serum-resistant and thermostable vesicular stomatitis virus G glycoprotein for pseudotyping retroviral and lentiviral vectors Gene Therapy 2013 807 815
[32] Cancer control through principles of systems science, complexity, and chaos theory: a model Int. J. Med. Sci. 2007 164 173
[33] , , , , Quantitative impact of immunomodulation versus oncolysis with cytokine-expressing virus therapeutics Mathematical Biosciences and Engineering 2015 841 858
[34] , Modeling immunotherapy of the tumor-immune interaction J. Math. Biol. 1998 235 252
[35] , , , , , , , , , , Baseline tumour growth and immune control in laboratory mice are significantly inuenced by subthermoneutral housing temperature Proc. Natl. Acad. Sci. USA 2013 20176 20181
[36] , , , , , , , , , On the role of antigen maintaining cytotoxic T-cell memory Proc. Natl. Acad. Sci. USA 1996 9716 9723
[37] , Antiangiogenic therapy in cancer treatment as an optimal control problem SIAM. J. Control Optim. 2007 1052 1079
[38] , , What can be learned from a chaotic cancer model? J. Theor. Biol. 2013 7 16
[39] , , Oncolytic virotherapy as a personalized cancer vaccine Int. J. Cancer 2008 493 499
[40] , , A validated mathematical model of tumour growth including tumour-host interaction, cell-mediated immune response and chemotherapy Bull. Math. Biol. 2014 2884 2906
[41] Deterministic nonperiodic ow J. Atmospheric Sciences 1963 130 141
[42] , Oscillations and chaos in physiological control systems Science 1977 287 289
[43] Nonlinear deterministic analysis of tissue texture: a stereological study on mastopathic and mammary cancer tissue using chaos theory J. Microscopy 1997 47 66
[44] J.D. Murray. Mathematical Biology I. An Introduction. Springer 2002.
[45] , Role of inammatory mediators in angiogenesis Current Drug Targets - Inammation & Allergy 2005 3 8
[46] N.I.H., O.A.C.U.. Guidelines for endpoints in animal study proposals. 1996 http://oacu.od.nih.gov/ARAC/documents/ASP\_Endpoints.pdf.
[47] , Modeling the macrophage invasion of tumors: effects on growth and composition Mathematical Medicine and Biology 1998 165 185
[48] , , , Recent progress in the battle between oncolytic viruses and tumors Nature Reviews Cancer 2005 965 976
[49] , Oncolytic virus therapy for cancer: the first wave of translational clinical trials Transl. Res. 2013 355 364
[50] , Spatial chaos and complexity in the intracellular space of cancer and normal cells Theoretical Biology and Medical Modeling 2013 62
[51] , , , , , Dynamics of melanoma tumor therapy with vesicular stomatitis virus: explaining the variability in outcomes using mathematical modeling Gene Ther. 2012 543 549
[52] , , Cancer immunotherapy: moving beyond current vaccines Nature Medicine 2004 909 915
[53] , , Oncolytic virotherapy Nat. Biotechnol. 2012 658 670
[54] , , , , , , , , , , , , , , , Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomised trials J. Clin. Oncol. 2009 872 877
[55] , Cancer as a complex adaptive system Medical Hypotheses 1996 235 241
[56] , , , Decelerating growth and human breast cancer Cancer 1993 2013 2019
[57] , , , , , , , , PEGylation of vesicular stomatitis virus extends virus persistence in blood circulation of passively immunized mice J. Virol 2013 3752 3759
[58] , , Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery Cancer Res. 2003 1317 1324
[59] K.P. Wilkie, P. Hahnfeldt. Modelling the dichotomy of the immune response to cancer: cytotoxic effects and tumor-promoting inammation. ArXiv, 1305.3634 (2014), 1–24.
[60] , Effector and memory CTL differentiation Annu. Rev. Immunol. 2007 171 192
[61] Viruses as antitumor weapons: defining conditions for tumor remission Cancer Res. 2001 3501 3507
[62] Computational modelling approaches to studying the dynamics of oncolytic viruses Mathematical Biosciences and Engineering 2013 939 957
[63] , , , , , Complex spatial dynamics of oncolytic viruses in vitro: mathematical and experimental approaches PLoS Comput. Biol. 2011 e1002547
[64] , Towards predictive computational models of oncolytic virus therapy: basis for experimental validation and model selection PLoS One 2009 e4271
[65] , , , Determining Lyapunov exponents from a time series Physica D 1985 285 317
[66] , , , Modelling and analysis of a virus that replicates selectively in tumor cells Bull. Math. Biol. 2001 731 768
[67] , , , , , , , , , , , , , , , Effector function of human tumour-specific CD8 T cells in melanoma lesions: a state of local functional tolerance Cancer Res. 2004 2865 2873
Cité par Sources :