H.I. Egilmez 1 ; A.Yu. Morozov 1, 2
@article{10_1051_mmnp_201611403,
author = {H.I. Egilmez and A.Yu. Morozov},
title = {Tri-trophic {Plankton} {Models} {Revised:} {Importance} of {Space,} {Food} {Web} {Structure} and {Functional} {Response} {Parametrisation}},
journal = {Mathematical modelling of natural phenomena},
pages = {16--33},
year = {2016},
volume = {11},
number = {4},
doi = {10.1051/mmnp/201611403},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611403/}
}
TY - JOUR AU - H.I. Egilmez AU - A.Yu. Morozov TI - Tri-trophic Plankton Models Revised: Importance of Space, Food Web Structure and Functional Response Parametrisation JO - Mathematical modelling of natural phenomena PY - 2016 SP - 16 EP - 33 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611403/ DO - 10.1051/mmnp/201611403 LA - en ID - 10_1051_mmnp_201611403 ER -
%0 Journal Article %A H.I. Egilmez %A A.Yu. Morozov %T Tri-trophic Plankton Models Revised: Importance of Space, Food Web Structure and Functional Response Parametrisation %J Mathematical modelling of natural phenomena %D 2016 %P 16-33 %V 11 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611403/ %R 10.1051/mmnp/201611403 %G en %F 10_1051_mmnp_201611403
H.I. Egilmez; A.Yu. Morozov. Tri-trophic Plankton Models Revised: Importance of Space, Food Web Structure and Functional Response Parametrisation. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 4, pp. 16-33. doi: 10.1051/mmnp/201611403
[1] , When can we trust our model predictions? Unearthing structural sensitivity in biological systems Proc. R. Soc. A 2012
[2] , Invulnerable prey and the paradox of enrichment Ecology 1996 1125 1133
[3] , Beneath the surface: characteristics of oceanic ecosystems under weak mixing conditions - a theoretical investigation Prog. Oceanogr. 2007 771 796
[4] , , , The effect of grazing-mediated DMS production on the behaviour of the copepod Calanus helgolandicus Mar. Drugs 2013 2486 2500
[5] Environmental factors controlling phytoplankton processes in the Southern Ocean J. Phycol. 2002 844 861
[6] , , Grazing patterns of copepods in the upwelling system off Peru Limnol. Oceanogr. 1980 583 596
[7] , , The feeding ecology of the copepod Centropages typicus (Kroyer) Prog. Oceanogr. 2007 137 150
[8] , Moulting and mortality rates of copepods related to age within stage: Experimental results Mar. Ecol. Prog. Ser. 1992 235 243
[9] , , Phytoplankton taxa in relation to primary production in the equatorial Pacific Deep Sea Res. 1990 1733 1752
[10] , Type-3 functional response in limnetic suspension-feeders, as demonstrated by in situ grazing rates Hydrobiologia 1992 175 191
[11] , , , , Structural sensitivity of biological models revisited J. Theor. Biol. 2011 82 91
[12] F. Courchamp, L. Berec, J. Gascoigne. Allee Effects in Ecology and Conservation. Oxford Uni. Press, Oxford, 2006.
[13] , , , Photosynthetic characteristics and estimated growth rates indicate that grazing is the proximate control of primary production in the equatorial Pacific J. Geophys. Res. 1992 639 654
[14] Allee effect: population growth, critical density, and chance of extinction Nat. Resour. Model. 1989 481 538
[15] , Effects of temperature and food abundance on grazing and short-term weight change in the marine copepod Acartia hudsonica Limnol. Oceanogr. 1996 361 378
[16] , Zooplankton mortality and the dynamical behaviour of plankton population models Bull. Math. Biol. 1999 303 339
[17] , , Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system J. Plankton Res. 2000a 1619 1648
[18] , , The stability of an NPZ model subject to realistic levels of vertical mixing J. Mar. Res. 2000b 37 60
[19] , The role of higher predation in plankton population models J. Plankton Res. 2000 1085 1112
[20] , , , Light and growth in marine phytoplankton: Allometric, taxonomic, and environmental variation Limnol. Oceanogr. 2015 540 552
[21] , , , Revisiting the stability of spatially heterogeneous predator-prey systems under eutrophication Bull. Math. Biol. 2015 1886 1908
[22] Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp Mar. Ecol. Prog. Ser. 1987 49 68
[23] , Community response to enrichment is highly sensitive to model structure Biol. Lett. 2005 9 12
[24] , , , Modelling the production of dimethylsulfide during a phytoplankton bloom J. Geophys. Res. 1993 22805 22816
[25] , Unpalatable prey resolves the paradox of enrichment P. Roy. Soc. Lond. B. Bio. 1999 1215 1219
[26] , , , , Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics Deep-sea Res. Pt. II 2003 2847 2875
[27] Top-down impact by copepods on ciliate numbers and persistence depends on copepod and ciliate species composition J. Plankton Res. 2006 499 507
[28] , Prey switching by Acartia clausi: experimental evidence and implications of intraguild predation assessed by a model Mar. Ecol. Prog. Ser. 1997 247 259
[29] , , Zooplankton grazing and growth: Scaling within the 2-2000 μm body size range Limnol. Oceanogr. 1997 687 704
[30] , , Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments Mar. Ecol. Prog. Ser. 1993 51 57
[31] , Paradoxes or theoretical failures? The jury is still out Ecol. Model. 2005 3 14
[32] A. Kharab, R. B. Guenther. An Introduction to Numerical Methods: A MATLAB Approach. Third edition. CRC Press, Boca Raton, 2012.
[33] , , Prey switching behaviour in the planktonic copepod Acartia tonsa Mar. Ecol. Prog. Ser. 1996 65 75
[34] Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs BMC Biol. 2005 10
[35] , , , , Multitrophic interactions in the sea: assessing the effect of infochemical-mediated foraging in a 1-d spatial model MMNP 2013 25 44
[36] , , , , , Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community PLoS ONE 2012 e49034
[37] , , Top-down control in a patchy environment: Revisiting the stabilizing role of food-dependent predator dispersal Theor. Popul. Biol. 2012 9 19
[38] A. Yu. Morozov. Incorporating complex foraging of zooplankton in models: role of micro and mesoscale processes in macroscale patterns. In Dispersal, individual movement and spatial ecology: a mathematical perspective (eds M Lewis, P Maini S Petrovskii), pp. 1–10. New York, NY: Springer, 2011.
[39] , , , Nutrient-rich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity Math. Med. Biol. 2011 185 215
[40] , , Revisiting the role of individual variability in population persistence and stability PLoS ONE 2013 e70576
[41] , Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching PLoS ONE 2013 e74586
[42] , A resolution of the paradox of enrichment J. Theor. Biol. 2007 194 201
[43] The functional response of predators J. Appl. Ecol. 1973 335 342
[44] , , Transition to spatiotemporal chaos can resolve the paradox of enrichment Ecol. Complex 2004 37 47
[45] , Intraguild predation: the dynamics of complex trophic interactions Trends. Ecol. Evol. 1992 151 155
[46] J.E.G. Raymont. Plankton and Productivity in the Oceans. Phytoplankton, Vol. 1 Pergamon. Oxford (1980)
[47] , , Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer J. Theor. Biol. 2010 120 133
[48] , , Imperfect prey selectivity of predators promotes biodiversity and irregularity in food webs Ecol. Letts. 2015 1262 1269
[49] Paradox of enrichment: destabilization of exploitation ecosystems in ecological time Science 1971 385 387
[50] , Graphical representation and stability conditions of predator-prey interactions Am. Nat. 1963 209 223
[51] , The stability of ecosystems: a brief overview of the paradox of enrichment J. Bioscience 2007 421 428
[52] , Consequences of the Allee effect for behaviour, ecology and conservation Trends. Ecol. Evol. 1999 401 405
[53] , Predation on Protozoa: its importance to zooplankton J. Plankton Res. 1990 891 908
[54] , Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching J. Exp. Mar. Biol. Ecol. 2005 85 98
[55] , Foraging behaviour of six calanoid copepods: observations and hydrodynamic analysis Mar. Ecol. Prog. Ser. 1990 23 33
[56] , , , Maximal feeding with active preyswitching: A kill-the-winner functional response and its effect on global diversity and biogeography Prog. Oceanogr. 2014 93 109
[57] , Swimming behaviour of developmental stages of the calanoid copepod Temora longicornis at different food concentrations Mar. Ecol. Prog. Ser. 1995 153 161
Cité par Sources :