@article{10_1051_mmnp_201611303,
author = {G. Gill and P. Straka},
title = {A {Semi-Markov} {Algorithm} for {Continuous} {Time} {Random} {Walk} {Limit} {Distributions}},
journal = {Mathematical modelling of natural phenomena},
pages = {34--50},
year = {2016},
volume = {11},
number = {3},
doi = {10.1051/mmnp/201611303},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611303/}
}
TY - JOUR AU - G. Gill AU - P. Straka TI - A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions JO - Mathematical modelling of natural phenomena PY - 2016 SP - 34 EP - 50 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611303/ DO - 10.1051/mmnp/201611303 LA - en ID - 10_1051_mmnp_201611303 ER -
%0 Journal Article %A G. Gill %A P. Straka %T A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions %J Mathematical modelling of natural phenomena %D 2016 %P 34-50 %V 11 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611303/ %R 10.1051/mmnp/201611303 %G en %F 10_1051_mmnp_201611303
G. Gill; P. Straka. A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 34-50. doi: 10.1051/mmnp/201611303
[1] , Phys. Rep. 1 77 2000
[2] , , , , , , Biophys. J. 1652 1660 2013
[3] , , , Rev. Geophys. RG2003 2006
[4] Complex Netw. Econ. Interact. 3 16 2005
[5] , , , Neuron 635 48 2006
[6] , Biophys. J. 2960 71 2005
[7] Bruce I Henry, Trevor AM Langlands, Peter Straka. An introduction to fractional diffusion. In R L. Dewar and F Detering, editors, Complex Phys. Biophys. Econophysical Syst. World Sci. Lect. Notes Complex Syst., volume 9 of World Scientific Lecture Notes in Complex Systems, pages 37–90, Singapore, 2010. World Scientific.
[8] , , Phys. Rev. Lett. 170602 2010
[9] , J. Comput. Phys. 719 736 2005
[10] Vicenc Mendez, Sergei Fedotov, Werner Horsthemke. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer Berlin/Heidelberg, 1st edition, 2010. jun
[11] , , Math. Model. Nat. Phenom. 17 27 2013
[12] , J. Theor. Biol. 71 83 2015
[13] , Phys. Rev. E 062127 2015
[14] , , Diffusion and relaxation controlled by tempered α-stable processes Phys. Rev. E 6 11 2008
[15] , , , Water Resour. Res. 2003
[16] , Stoch. Process. their Appl. 324 336 2011
[17] , , , Comput. Math. with Appl. 3021 3036 2012
[18] , , , Stoch. Process. their Appl. 4021 4038 2015
[19] , , , , Phys. Rev. E 1 7 2010
[20] , Ann. Probab. 1699 1723 2014
[21] Ofer Busani. Finite Dimensional Fokker-Planck Equations for Continuous Time Random Walks. arXiv 1510.01150, oct 2015.
[22] , J. Stat. Phys. 878 886 2012
[23] , Europhys. Lett. 10002 2007
[24] Mark M. Meerschaert, Alla Sikorskii. Stochastic models for fractional calculus. De Gruyter, Berlin/Boston, 2011.
[25] D. Applebaum. Lévy Processes and Stochastic Calculus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2nd edition, may 2009.
[26] Jean Bertoin. Subordinators: examples and applications, volume 1717 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
[27] Meerschaert, Peter Straka. Inverse Stable Subordinators Math. Model. Nat. Phenom. 1 16 2013
[28] Phys. Rev. E 1 6 2008
[29] , , , , SIAM J. Appl. Math. 1445 1468 2015
[30] Boris Baeumer, Peter Straka. Fokker–Planck and Kolmogorov Backward Equations for Continuous Time Random Walk scaling limits. Proc. Amer. Math. Soc., arXiv 1501.00533, jan 2016.
[31] , , J. Stat. Phys. 1241 1250 2014
[32] Z. Wahrsch. Verw. Geb. 167 193 1972
[33] Stoch. Process. Appl. 677 707 2007
[34] Peter Straka. Continuous Time Random Walk Limit Processes: Stochastic Models for Anomalous Diffusion, available at http://unsworks.unsw.edu.au/fapi/datastream/unsworks:9800/SOURCE02. PhD thesis, University of New South Wales, 2011.
[35] , Phys. Rev. E 1 6 2010
[36] , J. Chem. Phys. 6167 2003
[37] Ofer Busani. Aging uncoupled continuous time random walk limits. arXiv, 1402.3965, feb 2015.
[38] , , , , , J. Comput. Phys. 508 534 2016
[39] Jean Jacod and Albert N Shiryaev. Limit Theorems for Stochastic Processes. Springer, dec 2002.
[40] P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Statistics. John Wiley Sons Inc, New York, second edition, jan 1968.
[41] Am. Math. Mon. 419 1960
Cité par Sources :