T. Sandev  1 , 2 ; A. Iomin  3 ; H. Kantz  1 ; R. Metzler  4 , 5 ; A. Chechkin  1 , 6 , 7
@article{10_1051_mmnp_201611302,
author = {T. Sandev and A. Iomin and H. Kantz and R. Metzler and A. Chechkin},
title = {Comb {Model} with {Slow} and {Ultraslow} {Diffusion}},
journal = {Mathematical modelling of natural phenomena},
pages = {18--33},
year = {2016},
volume = {11},
number = {3},
doi = {10.1051/mmnp/201611302},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611302/}
}
TY - JOUR AU - T. Sandev AU - A. Iomin AU - H. Kantz AU - R. Metzler AU - A. Chechkin TI - Comb Model with Slow and Ultraslow Diffusion JO - Mathematical modelling of natural phenomena PY - 2016 SP - 18 EP - 33 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611302/ DO - 10.1051/mmnp/201611302 LA - en ID - 10_1051_mmnp_201611302 ER -
%0 Journal Article %A T. Sandev %A A. Iomin %A H. Kantz %A R. Metzler %A A. Chechkin %T Comb Model with Slow and Ultraslow Diffusion %J Mathematical modelling of natural phenomena %D 2016 %P 18-33 %V 11 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611302/ %R 10.1051/mmnp/201611302 %G en %F 10_1051_mmnp_201611302
T. Sandev; A. Iomin; H. Kantz; R. Metzler; A. Chechkin. Comb Model with Slow and Ultraslow Diffusion. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 18-33. doi: 10.1051/mmnp/201611302
[1] , Phys. Rep. 1990 127 293
[2] , Phys. Rep. 2000 1 77 A: Math Gen. 2004 R161 R208
[3] , , , Phys. Chem. Chem. Phys. 2014 24128 24164
[4] , Phys. Rev. B 1975 2455
[5] , , , , , , , Phys. Rev. Lett. 2011 048103
[6] , Phys. Rev. Lett. 2006 098102
[7] , Phys. Rev. Lett. 2009 038102
[8] , , , New J. Phys. 2013 045011
[9] , , , , , Sci. Rep. 2015 11690
[10] , , Phys. Rev. Lett. 2000 5655
[11] , , New J. Phys. 2014 092002
[12] , Biophys. J. 2014 2579 2591
[13] , , J. Chem. Phys. 2011 141105
[14] , , , Phys. Rev. Lett. 2012 188103
[15] , J. Phys. A: Math. Gen. 1984 2995
[16] , Physica A 1986 474 482
[17] , , Phys. Rev. A 1987 1403 1408
[18] , , J. Phys. A: Math. Gen. 1989 2867
[19] , Sov. Phys. JETP 1991 161 165
[20] , J. Exper. Theor. Phys. 1998 700 713
[21] Physica A 2000 304 314
[22] , Phys. Rev. Lett. 2004 120603
[23] , Phys. Rev. E 2005 061101
[24] , , , , Brazilian J. Phys. 2009 483 487
[25] , Phys. Rev. E 2009 041128
[26] I. Podlubny. Fractional Differential Equations. Acad. Press, San Diego etc., 1999.
[27] , Chaos Solitons Fractals 2013 46 51
[28] , Phys. Rev. E 2013 012706
[29] Phys. Rev. E 2011 052106
[30] Phys. Rev. E 2012 032101
[31] , , , , Phys. Rev. E 2013 012121
[32] , , , , , Colloids and Surfaces A: Physicochem. Eng. Aspects 2007 111 116
[33] , J. Exper. Theor. Phys. 2015 860 870
[34] , , IEEE Electron. Lett. 2006 785 787
[35] M. Thiriet. Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems. Springer, New York, 2013.
[36] D. Ben-Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered System. Cambridge University Press, Cambridge, 2000.
[37] , Phys. Rev. E 2013 052126
[38] , , , J. Exper. Theor. Phys 2008 999 1005
[39] , , , , New J. Phys. 2014 093050
[40] , , Phys. Rev. E 2015 032108
[41] , , , Phys. Rev. Lett. 2008 058101
[42] , , Phys. Rev. Lett. 2013 020602
[43] , , Phys. Rev. E 2010 010101(R)
[44] , , Phys. Chem. Chem. Phys. 2015 30134
[45] , , , Fract. Calc. Appl. Anal. 2015 1006 1038
[46] , , Phys. Rev. E 2009 031112
[47] Phys. Rev. E 2001 046118
[48] , Math. Model. Nat. Phenom. 2013 1 16
[49] Integr. Equ. Oper. Theory 2011 583 600
[50] , , Phys. Rev. E 2002 046129
[51] , , EPL 2003 326
[52] A. Chechkin, I.M. Sokolov, J. Klafter. Natural and Modified Forms of Distributed Order Fractional Diffusion Equations, in Fractional Dynamics: Recent Advances, Eds. J. Klafter, S.C. Lim and R. Metzler. World Scientific Publishing Company, Singapore, 2011.
[53] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelesticity: An introduction to Mathematical Models. Imperial College Press, London, 2010.
[54] , Phys. Lett. A 2014 1 9
[55] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Higher Transcedential Functions. Vol. 3, McGraw-Hill, New York, 1955.
[56] Theor. Probab. Appl. 1982 256 268
[57] , , , , J. Phys. A: Math. Theor. 2014 492002
[58] , , , Phys. Chem. Chem. Phys. 2015 21791 21798
[59] , , , , , New J. Phys. 2014 113050
[60] , Phys. Rev. Lett. 2000 5998
[61] , Phys. Chem. Chem. Phys. 2013 20220 20235
[62] , , , Phys. Rev. Lett. 2013 208301
[63] , , , New J. Phys. 2015 063038
[64] A.M. Mathai, R.K. Saxena, H.J. Haubold. The H-function: Theory and Applications. New York Dordrecht Heidelberg London, Springer, 2010.
[65] R. Schilling, R. Song, Z. Vondracek. Bernstein Functions. De Gruyter, Berlin, 2010.
[66] C. Berg, G. Forst. Potential Theory on Locally Compact Abelian Groups. Berlin, Springer, 1975.
[67] Yokohama Math. J. 1971 7 15
[68] , , Astrophys. Space Sci. 2004 299 310
[69] , , J. Math. Phys. 2014 023301
[70] , SIAM J. Numer. Anal. 2008 69 88
[71] , , , Nonlin. Dyn. 2010 339 349
[72] W. Feller. An Introduction to Probability Theory and Its Applications. Vol. II, Wiley, New York, 1968.
Cité par Sources :