Voir la notice de l'article provenant de la source EDP Sciences
@article{10_1051_mmnp_201611210,
author = {V. Vatchev},
title = {Variable {Moving} {Average} {Transform} {Stitching} {Waves}},
journal = {Mathematical modelling of natural phenomena},
pages = {133--144},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2016},
doi = {10.1051/mmnp/201611210},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611210/}
}
TY - JOUR AU - V. Vatchev TI - Variable Moving Average Transform Stitching Waves JO - Mathematical modelling of natural phenomena PY - 2016 SP - 133 EP - 144 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201611210/ DO - 10.1051/mmnp/201611210 LA - en ID - 10_1051_mmnp_201611210 ER -
V. Vatchev. Variable Moving Average Transform Stitching Waves. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 133-144. doi: 10.1051/mmnp/201611210
[1] M. Ablowitz, P. Clarkson. Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge, U.K., 1991.
[2] C. Boor, K. Höllig, S. Riemenschneider.Box Splines. Applied Mathematical Sciences, 98, 1993.
[3] , , , , SIAM J. Numer. Anal. 2013 2538 2562
[4] W. Hereman, Shallow water waves and solitary waves. Encyclopedia of Complexity and Systems Science, Springer-Verlag, Heibelberg, Germany (2009), 8112–8125.
[5] P. Kaufman. Smarter Trading. McGraw-Hill, 1995.
[6] J. Kenney, E. Keeping.Moving Averages. Mathematics of Statistics, Pt. 1, 3rd ed.,Van Nostrand, Princeton, NJ (1962), 221–223.
[7] , Philos Mag (Ser 5) 1895 422 443
[8] A. Polyanin, A. Manzhirov. Handbook of Integral Equations. CRC Press, Boca Raton, 1998.
[9] S. Skiena., Minkowski Sum. The Algorithm Design Manual, Springer-Verlag, New York (1997), 395–396.
[10] R. Szeliski. Computer Vision, Algorithms and Application. Springer, 2011.
[11] Jaen J. Approx. 2012 61 71
[12] Lecture Notes in Computer Science 2006 829 840
Cité par Sources :