Spreading Speeds and Linear Determinacy for Two Species Competition Systems with Nonlocal Dispersal in Periodic Habitats
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 113-141.

Voir la notice de l'article provenant de la source EDP Sciences

The current paper is concerned with the existence of spreading speeds and linear determinacy for two species competition systems with nonlocal dispersal in time and space periodic habitats. The notion of spreading speed intervals for such a system is first introduced via the natural features of spreading speeds. The existence and lower bounds of spreading speed intervals are then established. When the periodic dependence of the habitat is only on the time variable, the existence of a single spreading speed is proved. It also shows that, under certain conditions, the spreading speed interval in any direction is a singleton, and, moreover, the linear determinacy holds.
DOI : 10.1051/mmnp/201510609

L. Kong 1 ; N. Rawal 2 ; W. Shen 2

1 Department of Mathematical Sciences, University of Illinois at Springfield Springfield, IL 62703 U.S.A.
2 Department of Mathematics and Statistics, Auburn University, AL 36849 U.S.A.
@article{MMNP_2015_10_6_a8,
     author = {L. Kong and N. Rawal and W. Shen},
     title = {Spreading {Speeds} and {Linear} {Determinacy} for {Two} {Species} {Competition} {Systems} with {Nonlocal} {Dispersal} in {Periodic} {Habitats}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {113--141},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2015},
     doi = {10.1051/mmnp/201510609},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510609/}
}
TY  - JOUR
AU  - L. Kong
AU  - N. Rawal
AU  - W. Shen
TI  - Spreading Speeds and Linear Determinacy for Two Species Competition Systems with Nonlocal Dispersal in Periodic Habitats
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 113
EP  - 141
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510609/
DO  - 10.1051/mmnp/201510609
LA  - en
ID  - MMNP_2015_10_6_a8
ER  - 
%0 Journal Article
%A L. Kong
%A N. Rawal
%A W. Shen
%T Spreading Speeds and Linear Determinacy for Two Species Competition Systems with Nonlocal Dispersal in Periodic Habitats
%J Mathematical modelling of natural phenomena
%D 2015
%P 113-141
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510609/
%R 10.1051/mmnp/201510609
%G en
%F MMNP_2015_10_6_a8
L. Kong; N. Rawal; W. Shen. Spreading Speeds and Linear Determinacy for Two Species Competition Systems with Nonlocal Dispersal in Periodic Habitats. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 113-141. doi : 10.1051/mmnp/201510609. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510609/

[1] P. Bates, G. Zhao J. Math. Anal. Appl. 2007 428 440

[2] H. Berestycki, J. Coville, H.-H. Vo, Nonlocal heterogeneous KPP equations in ℝN, (2014) preprint.

[3] H. Berestycki, J. Coville, H-H Vo, Persistence criteria for populations with non-local dispersion, (2014), preprint.

[4] R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.

[5] E. Chasseigne, M. Chaves, J. D. Rossi J. Math. Pures Appl. 2006 271 291

[6] J. Coville J. Differential Equations 2010 2921 2953

[7] J. Coville Annali di Matematica 2006 461 485

[8] J. Coville, J. Dávila, S. Martínez SIAM J. Math. Anal. 2008 1693 1709

[9] J. Coville, J. Dávila, S. Martínez Pulsating fronts for nonlocal dispersion and KPP nonlinearity 2013 179 223

[10] J. Coville, L. Dupaigne Nonlinear Analysis 2005 797 819

[11] C. Cortazar, M. Elgueta, J. D. Rossi Israel J. of Math. 2009 53 60

[12] J. Fang, X.-Q. Zhao SIAM J. Math. Anal. 2014 3678 3704

[13] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in nonlinear analysis, 153-191, Springer, Berlin, 2003.

[14] J. García-Melán, J. D. Rossi J. Differential Equations 2009 21 38

[15] J.S. Guo, X. Liang J. Dynam. Differential equations 2011 353 363

[16] J.-S. Guo, C.-H. Wu J. Differential Equations 2012 4357 4391

[17] G. Hetzer, T. Nguyen, W. Shen Commun. Pure Appl. Anal. 2012 1699 1722

[18] Y. Hosono Bull. Math. Biol. 1998 435 448

[19] W. Huang Journal Dynam. Differential Equations 2010 285 297

[20] W. Huang, M. Han J. Differential Euations 2011 1549 1561

[21] V. Hutson, Y. Lou, K. Mischaikow J. Differential Equations 2002 97 136

[22] V. Hutson, K. Mischaikow, P. Poláčik J. Math. Biol. 2001 501 533

[23] V. Hutson, S. Martinez, K. Mischaikow, G.T. Vickers J. Math. Biol. 2003 483 517

[24] V. Hutson, W. Shen, G.T. Vickers Rocky Mountain Journal of Mathematics 2008 1147 1175

[25] C.-Y. Kao, Y. Lou, W. Shen Discrete and Continuous Dynamical Systems 2010 551 596

[26] M. Lewis, B. Li, H. Weinberger J. Math. Biol. 2002 219 233

[27] B. Li, H. Weinberger, M. Lewis Math. Biosci. 2005 82 98

[28] X. Liang, X.-Q. Zhao Comm. Pure Appl. Math. 2007 1 40

[29] X. Liang, X.-Q. Zhao Journal of Functional Analysis 2010 857 903

[30] W.-T. Li, Y.-J. Sun, Z.-C. Wang Nonlinear Anal. Real World Appl. 2010 2302 2313

[31] R. Lui Math. Biosciences 1989 269 312

[32] S. Pan, G. Lin, Invasion traveling wave solutions of a competitive system with dispersal, Boundary Value Problems, 2012:120.

[33] C. V. Pao J. Math. Anal. Appl. 1981 54 76

[34] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag New York Berlin Heidelberg Tokyo, 1983.

[35] Nar Rawal, W. Shen Journal of Dynamics and Differential Equations 2012 927 954

[36] Nar Rawal, W. Shen, A. Zhang Discrete and Continuous Dynamical Systems, series A 2015 1609 1640

[37] W. Shen, A. Zhang Journal of Differential Equations 2010 747 795

[38] W. Shen, A. Zhang Communications on Applied Nonlinear Analysis 2012 73 101

[39] W. Shen, A. Zhang Proc. Amer. Math. Soc. 2012 1681 1696

[40] Hal L. Smith, Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995.

[41] H. F. Weinberger SIAM J. Math. Anal. 1982 353 396

[42] H. F. Weinberger J. Math. Biol. 2002 511 548

[43] H. Weinberger, M. Lewis, B. Li J. Math. Biol. 2002 183 218

[44] X. Yu, X.-Q. Zhao, work in progress.

[45] X.-Q. Zhao, Dynamical Systems in Population Biology, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16. Springer-Verlag, New York, 2003

[46] L. Zhou, C. V. Pao Nonlinear Anal. 1982 1163 1184

Cité par Sources :