A Mathematical Model for Flash Sintering
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 77-89.

Voir la notice de l'article provenant de la source EDP Sciences

A mathematical model is presented for the Joule heating that occurs in a ceramic powder compact during the process of flash sintering. The ceramic is assumed to have an electrical conductivity that increases with temperature, and this leads to the possibility of runaway heating that could facilitate and explain the rapid sintering seen in experiments. We consider reduced models that are sufficiently simple to enable concrete conclusions to be drawn about the mathematical nature of their solutions. In particular we discuss how different local and non-local reaction terms, which arise from specified experimental conditions of fixed voltage and current, lead to thermal runaway or to stable conditions. We identify incipient thermal runaway as a necessary condition for the flash event, and hence identify the conditions under which this is likely to occur.
DOI : 10.1051/mmnp/201510607

I. J. Hewitt 1 ; A. A. Lacey 2 ; R. I. Todd 3

1 Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
2 Maxwell Institute for Mathematical Sciences and Department of Mathematics School of Mathematical and Computer Sciences, Heriot-Watt University Riccarton, Edinburgh, EH14 4AS, UK
3 Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
@article{MMNP_2015_10_6_a6,
     author = {I. J. Hewitt and A. A. Lacey and R. I. Todd},
     title = {A {Mathematical} {Model} for {Flash} {Sintering}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2015},
     doi = {10.1051/mmnp/201510607},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510607/}
}
TY  - JOUR
AU  - I. J. Hewitt
AU  - A. A. Lacey
AU  - R. I. Todd
TI  - A Mathematical Model for Flash Sintering
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 77
EP  - 89
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510607/
DO  - 10.1051/mmnp/201510607
LA  - en
ID  - MMNP_2015_10_6_a6
ER  - 
%0 Journal Article
%A I. J. Hewitt
%A A. A. Lacey
%A R. I. Todd
%T A Mathematical Model for Flash Sintering
%J Mathematical modelling of natural phenomena
%D 2015
%P 77-89
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510607/
%R 10.1051/mmnp/201510607
%G en
%F MMNP_2015_10_6_a6
I. J. Hewitt; A. A. Lacey; R. I. Todd. A Mathematical Model for Flash Sintering. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 77-89. doi : 10.1051/mmnp/201510607. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510607/

[1] H. Amann SIAM Rev. 1976 620 709

[2] S.N. Antontsev, M. Chipot Siberian. Math. Jl. 1997 827 841

[3] J. Bebernes, S. Bricher SIAM Jl. Math. Anal. 1992 852 869

[4] J. Bebernes, A.A. Lacey Adv. Diff. Eqns. 1997 927 53

[5] J. Bebernes, D. Eberly. Mathematical problems fromcombustion theory. Springer, New York, 1989.

[6] G. Cimatti Proc. Roy. Soc. Edin. 1990 79 84

[7] M. Cologna, B. Rashkova, R. Raj Flash sintering of nanograin zirconia in 5s at 850°C J. Am. Ceram. Soc. 2010 3556 3559

[8] A.C. Fowler, I. Frigaard, S.D. Howison SIAM Jl. Appl. Math. 1992 998 1011

[9] J.S.C. Francis, M. Cologna, R. Raj J. Eur. Ceram. Soc. 2012 3129 3136

[10] J.S.C. Francis, R. Raj J. Eur. Ceram. Soc. 2013 2754 2758

[11] P. Freitas Proc. Roy. Soc. Ed. 1994 169 188

[12] A. Friedman, B. Mcleod Indiana Univ. Jl. Maths. 1985 425 477

[13] I.M. Gelfand Amer. Math. Soc. Trans. 1963 295 381

[14] S. Grasso, Y. Sakka, N. Redntorff, C. Hu, G. Maizza, H. Borodianska, O. Vasylkiv J. Ceram. Soc. Japan 2011 144 146

[15] S. Grasso, T. Saunders, H. Porwal, O. Cedillos-Barraza, D.D. Jayaseelan, W.E. Lee, M.J. Reece Flash Spark Plasma Sintering (FSPS) of Pure ZrB2 J. Am. Ceram. Soc. 2014 2405 2408

[16] M.A. Herrero, J.J.L. Velázquez Coms. PDEs. 1992 205 219

[17] M.A. Herrero, J.J.L. Velázquez Israel Jl. Maths. 1993 321 341

[18] D.D. Joseph, T.S. Lundgren Arch. Rat. Mech. Anal. 1973 241 269

[19] H.B. Keller, D.S. Cohen Jl. Math. Mech. 1967 1361 1376

[20] A.A. Lacey SIAM Jl. Appl. Maths. 1983 1350 1366

[21] A.A. Lacey Eu. Jl. Appl. Maths. 1995 127 144

[22] A.A. Lacey Eu. Jl. Appl. Maths. 1995 201 224

[23] K.S. Naik, V.M. Sglavo, R. Raj J. Eur. Ceram. Soc. 2014 4063 4067

[24] R. Raj J. Eur. Ceram. Soc. 2012 2293 2301

[25] D. Sattinger Indiana Univ. Math. Jl. 1972 979 1000

[26] R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw. Electrical characteristics of flash sintering: thermal runaway of Joule heating. To appear in J. Eur. Ceram. Soc. (2015).

[27] E. Zapata-Solvas, S. Bonilla, P.R. Wilshaw, R.I. Todd J. Eur. Ceram. Soc. 2013 2811 2816

Cité par Sources :