Patterns and Transitions to Instability in an Intraspecific Competition Model with Nonlocal Diffusion and Interaction
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 17-29.

Voir la notice de l'article provenant de la source EDP Sciences

We consider an intraspecific resource competition model with asymmetric nonlocal dispersal and interaction. Both interaction and dispersal are modeled using convolution integrals. We introduce two parameters for each convolution kernel describing the range of nonlocality and the extent of asymmetry. It is shown that the spatially homogenous equilibrium of this model becomes unstable for sufficiently small diffusion rates by performing a linear stability analysis. Our numerical observations indicate that traveling and stationary wave type patterns arise near the stability boundary. Away from the stability boundary, solutions to the model exhibit colony formation i.e. one can observe formation of a new colony island just ahead of a vanishing stationary wave island. We further analyze the behavior of solutions to the model near the stability boundary using the techniques of weakly nonlinear analysis. We obtain a Stuart-Landau type equation and give its parameters in terms of Fourier transforms of the kernels. This analysis allows us to study the change in amplitudes of the solutions with respect to ranges of nonlocalities and extents of asymmetries of two kernel functions. We show that both continuous and discontinuous transitions from disordered behavior to ordered one are possible. We also verify these results numerically.
DOI : 10.1051/mmnp/201510603

O. Aydogmus 1

1 Department of Economics, Social Sciences University of Ankara, 06100 Ulus-Ankara, Turkey
@article{MMNP_2015_10_6_a2,
     author = {O. Aydogmus},
     title = {Patterns and {Transitions} to {Instability} in an {Intraspecific} {Competition} {Model} with {Nonlocal} {Diffusion} and {Interaction}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {17--29},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2015},
     doi = {10.1051/mmnp/201510603},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510603/}
}
TY  - JOUR
AU  - O. Aydogmus
TI  - Patterns and Transitions to Instability in an Intraspecific Competition Model with Nonlocal Diffusion and Interaction
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 17
EP  - 29
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510603/
DO  - 10.1051/mmnp/201510603
LA  - en
ID  - MMNP_2015_10_6_a2
ER  - 
%0 Journal Article
%A O. Aydogmus
%T Patterns and Transitions to Instability in an Intraspecific Competition Model with Nonlocal Diffusion and Interaction
%J Mathematical modelling of natural phenomena
%D 2015
%P 17-29
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510603/
%R 10.1051/mmnp/201510603
%G en
%F MMNP_2015_10_6_a2
O. Aydogmus. Patterns and Transitions to Instability in an Intraspecific Competition Model with Nonlocal Diffusion and Interaction. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 6, pp. 17-29. doi : 10.1051/mmnp/201510603. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510603/

[1] N. Britton J. Theor. Biol. 1989 57 66

[2] R. S. Cantrell, C. Cosner. Spatial ecology via reaction-diffusion equations. John Wiley Sons, 2004.

[3] R. Eftimie, G. De Vries, M. Lewis J. Math. Biol. 2009 37 74

[4] M. Fuentes, V. Kuperman, V. Kenkre Phys. Rev. Lett. 2003 158 104

[5] M. Fuentes, V. Kuperman, V. Kenkre J. Phys. Chem. B 2004 10505 10508

[6] S. Genieys, N. Bessonov, V. Volpert Math.Comput. Model. 2009 2109 2115

[7] S. Genieys, V. Volpert, P. Auger Math. Model. Nat. Phen. 2006 63 80

[8] S. A. Gourley J. Math. Biol. 2000 272 284

[9] E. E. Holmes, M. Lewis, J. Banks, R. Veit. Partial differential equations in ecology: spatial interactions and population dynamics. Ecology (1994), 17–29.

[10] J. Yu, M. Lewis Journal of mathematical biology 2012 403 439

[11] V. Hutson, S. Martinez, K. Mischaikow, G. Vickers J. Math. Biol. 2003 483 517

[12] F. Lutscher, E. Pachepsky, M. Lewis SIAM J. Appl. Math. 2005 1305 1327

[13] J. D. Murray. Mathematical biology II: spatial models and biomedical applications. Springer, 2003.

[14] B. Perthame, S. Genieys Math. Model. of Nat. Phen. 2007 135 151

[15] B. Segal, V. A. Volpert, A. Bayliss Physica 2013 12 22

[16] J. Stuart J. Fluid Mech. 1960 152 171

[17] M. Tanzy, V. A. Volpert, A. Bayliss, M. Nehrkorn Math. Biosci. 2013 14 26

[18] A. E. Tikhomirova, V. A. Volpert Appl. Math. Let. 2007 163 169

[19] C. M. Topaz, A. L. Bertozzi, M. Lewis B. Math. Biol. 2006 1601 1623

[20]

Cité par Sources :