Voir la notice de l'article provenant de la source EDP Sciences
V. I. Bykov 1 ; S. B. Tsybenova 1
@article{MMNP_2015_10_5_a4, author = {V. I. Bykov and S. B. Tsybenova}, title = {A {Parametric} {Analysis} of the {Basic} {Nonlinear} {Models} of the {Catalytic} {Reactions}}, journal = {Mathematical modelling of natural phenomena}, pages = {68--83}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {2015}, doi = {10.1051/mmnp/201510505}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510505/} }
TY - JOUR AU - V. I. Bykov AU - S. B. Tsybenova TI - A Parametric Analysis of the Basic Nonlinear Models of the Catalytic Reactions JO - Mathematical modelling of natural phenomena PY - 2015 SP - 68 EP - 83 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510505/ DO - 10.1051/mmnp/201510505 LA - en ID - MMNP_2015_10_5_a4 ER -
%0 Journal Article %A V. I. Bykov %A S. B. Tsybenova %T A Parametric Analysis of the Basic Nonlinear Models of the Catalytic Reactions %J Mathematical modelling of natural phenomena %D 2015 %P 68-83 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510505/ %R 10.1051/mmnp/201510505 %G en %F MMNP_2015_10_5_a4
V. I. Bykov; S. B. Tsybenova. A Parametric Analysis of the Basic Nonlinear Models of the Catalytic Reactions. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 68-83. doi : 10.1051/mmnp/201510505. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510505/
[1] Annals of the N.Y. Acad. of Sci. 1979 314 331
[2] Chem. Eng. Sci. 1978 1263 1268
[3] Adv. in Catalysis. 1978 59 96
,[4] Chem. Rev. 1995 697 794
,[5] Surf. Sci. Rep. 2004 1 48
[6] V. I. Bykov, S.B. Tsybenova. Nonlinear models of chemical kinetics. KRASAND, Moscow, 2011 [in Russian].
[7] Kinet. Catal. 1999 812 834
[8] Russ. J. Phys. Chem. 2006 1044 1049
, ,[9] Russ. J. Phys. Chem. 1985 2712 2716
[10] M. M. Slinko, N. I. Jaeger. Oscillating heterogeneous catalytic systems. Elsevier, Amsterdam, 1994.
[11] V. I. Bykov. Modeling of chemical reactions in chemical kinetics. KomKniga, Moscow, 2006. [in Russian].
[12] G. S. Yablonski, V. I. Bykov, A. N. Gorban, V. I. Elokhin. Kinetic models of catalytic reactions. Elsevier, Amsterdam, 1991.
[13] G. S. Yablonskii, V. I. Bykov, A. N. Gorban’. Kinetic models of catalytic reactions. Nauka, Novosibirsk, 1983. [in Russian].
[14] G. S. Yablonskii, V. I. Bykov, V. I. Elokhin. Kinetics of model heterogeneous catalysis reactions. Nauka, Novosibirsk, 1984. [in Russian].
[15] React. Kinet. Catal. Lett. 1994 87 93
,[16] React. Kinet. Catal. Lett 1995 145 158
,[17] Dokl. Phys. Chem. 2000 196 199
,[18] Dokl. Phys. Chem. 2001 134 137
, ,[19] Dokl. Chem. 2001 298 301
, ,[20] Dokl. Akad. Nauk SSSR. 1980 653 658
, ,[21] Dokl. Akad. Nauk SSSR. 1982 1194 1198
,[22] G. A. Chumakov, N. A. Chumakova. Relaxation oscillations in catalytic hydrogen oxidation including a chase on french ducks. XV Int. Conf. on Chem. Reactors CHEMREACTOR-15. Boreskov Inst. of Catalysis, Novosibirsk, 2001, 75–78.
[23] Russ. J. Phys. Chem. 2003 1402 1405
,[24] Combustion, Explosion and Shock Waves 2001 634 640
,[25] Theor. Found. Chem. Eng. 2003 59 69
,[26] M. Kholodniok, A. Klič, M. Kubiček, M. Marek. Methods of Analysis of Nonlinear Dynamical Models. Acad., Prague, 1986. [Mir, Moscow, 1991).
Cité par Sources :