A Parametric Analysis of the Basic Nonlinear Models of the Catalytic Reactions
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 68-83.

Voir la notice de l'article provenant de la source EDP Sciences

A series of the simplest thermokinetic models, in which the kinetic subsystem corresponds to traditional catalytic mechanisms, such as the Eley–Rideal mono- and bimolecular mechanisms and the Langmuir–Hinshelwood mechanism, and autocatalytic mechanisms characterized by multiplicity of steady states and autooscillations in the kinetic region, were considered. The method of continuation along a parameter was used for studying these basic models of thermokinetics. The parametric analysis performed allowed us to identify parameter regions characterized by critical effects (multiplicity of steady states and autooscillations).
DOI : 10.1051/mmnp/201510505

V. I. Bykov 1 ; S. B. Tsybenova 1

1 Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 119334 Russia
@article{MMNP_2015_10_5_a4,
     author = {V. I. Bykov and S. B. Tsybenova},
     title = {A {Parametric} {Analysis} of the {Basic} {Nonlinear} {Models} of the {Catalytic} {Reactions}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {68--83},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2015},
     doi = {10.1051/mmnp/201510505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510505/}
}
TY  - JOUR
AU  - V. I. Bykov
AU  - S. B. Tsybenova
TI  - A Parametric Analysis of the Basic Nonlinear Models of the Catalytic Reactions
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 68
EP  - 83
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510505/
DO  - 10.1051/mmnp/201510505
LA  - en
ID  - MMNP_2015_10_5_a4
ER  - 
%0 Journal Article
%A V. I. Bykov
%A S. B. Tsybenova
%T A Parametric Analysis of the Basic Nonlinear Models of the Catalytic Reactions
%J Mathematical modelling of natural phenomena
%D 2015
%P 68-83
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510505/
%R 10.1051/mmnp/201510505
%G en
%F MMNP_2015_10_5_a4
V. I. Bykov; S. B. Tsybenova. A Parametric Analysis of the Basic Nonlinear Models of the Catalytic Reactions. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 68-83. doi : 10.1051/mmnp/201510505. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510505/

[1] R. Aris Annals of the N.Y. Acad. of Sci. 1979 314 331

[2] G. Eigenberger Chem. Eng. Sci. 1978 1263 1268

[3] V. Hlavacek, J. Votruba Adv. in Catalysis. 1978 59 96

[4] R. Imbihl, G. Ertl Chem. Rev. 1995 697 794

[5] V. P. Zhdanov Surf. Sci. Rep. 2004 1 48

[6] V. I. Bykov, S.B. Tsybenova. Nonlinear models of chemical kinetics. KRASAND, Moscow, 2011 [in Russian].

[7] V. V. Azatyan Kinet. Catal. 1999 812 834

[8] V. V. Azatyan, Z. S. Andrianova, A. N. Ivanova Russ. J. Phys. Chem. 2006 1044 1049

[9] V. I. Bykov Russ. J. Phys. Chem. 1985 2712 2716

[10] M. M. Slinko, N. I. Jaeger. Oscillating heterogeneous catalytic systems. Elsevier, Amsterdam, 1994.

[11] V. I. Bykov. Modeling of chemical reactions in chemical kinetics. KomKniga, Moscow, 2006. [in Russian].

[12] G. S. Yablonski, V. I. Bykov, A. N. Gorban, V. I. Elokhin. Kinetic models of catalytic reactions. Elsevier, Amsterdam, 1991.

[13] G. S. Yablonskii, V. I. Bykov, A. N. Gorban’. Kinetic models of catalytic reactions. Nauka, Novosibirsk, 1983. [in Russian].

[14] G. S. Yablonskii, V. I. Bykov, V. I. Elokhin. Kinetics of model heterogeneous catalysis reactions. Nauka, Novosibirsk, 1984. [in Russian].

[15] V. I. Bykov, T. P. Pushkareva React. Kinet. Catal. Lett. 1994 87 93

[16] V. I. Bykov, T. P. Pushkareva React. Kinet. Catal. Lett 1995 145 158

[17] V. I. Bykov, S. B. Tsybenova Dokl. Phys. Chem. 2000 196 199

[18] V. I. Bykov, S. B. Tsybenova, M. G. Slin’Ko Dokl. Phys. Chem. 2001 134 137

[19] V. I. Bykov, S. B. Tsybenova, M. G. Slin’Ko Dokl. Chem. 2001 298 301

[20] G. A. Chumakov, M. G. Slin’Ko, V. D. Belyaev Dokl. Akad. Nauk SSSR. 1980 653 658

[21] G. A. Chumakov, M. G. Slin’Ko Dokl. Akad. Nauk SSSR. 1982 1194 1198

[22] G. A. Chumakov, N. A. Chumakova. Relaxation oscillations in catalytic hydrogen oxidation including a chase on french ducks. XV Int. Conf. on Chem. Reactors CHEMREACTOR-15. Boreskov Inst. of Catalysis, Novosibirsk, 2001, 75–78.

[23] V. I. Bykov, S. B. Tsybenova Russ. J. Phys. Chem. 2003 1402 1405

[24] V. I. Bykov, S. B. Tsybenova Combustion, Explosion and Shock Waves 2001 634 640

[25] V. I. Bykov, S. B. Tsybenova Theor. Found. Chem. Eng. 2003 59 69

[26] M. Kholodniok, A. Klič, M. Kubiček, M. Marek. Methods of Analysis of Nonlinear Dynamical Models. Acad., Prague, 1986. [Mir, Moscow, 1991).

Cité par Sources :