Differential Equations on Graphs
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 6-15.

Voir la notice de l'article provenant de la source EDP Sciences

The differential equations encountered in various applications may be treated as equations on graphs. In the paper it is shown that the structure of the graph allows us to investigate the properties of the solutions of such equations.
@article{MMNP_2015_10_5_a1,
     author = {A. I Vol{\textquoteright}pert},
     title = {Differential {Equations} on {Graphs}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {6--15},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2015},
     doi = {10.1051/mmnp/201510502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510502/}
}
TY  - JOUR
AU  - A. I Vol’pert
TI  - Differential Equations on Graphs
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 6
EP  - 15
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510502/
DO  - 10.1051/mmnp/201510502
LA  - en
ID  - MMNP_2015_10_5_a1
ER  - 
%0 Journal Article
%A A. I Vol’pert
%T Differential Equations on Graphs
%J Mathematical modelling of natural phenomena
%D 2015
%P 6-15
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510502/
%R 10.1051/mmnp/201510502
%G en
%F MMNP_2015_10_5_a1
A. I Vol’pert. Differential Equations on Graphs. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 6-15. doi : 10.1051/mmnp/201510502. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510502/

[1]

[2] N. M. Èmmanuèł’, D.G. Knorre. Course of chemical kinetics (homogenous reactions), 2nd ed., Vysšaja Škola, Moscow, 1969. (Russian) CA 73 # 29434n.

[3]

Cité par Sources :