Three Waves of Chemical Dynamics
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 1-5.

Voir la notice de l'article provenant de la source EDP Sciences

Three epochs in development of chemical dynamics are presented. We try to understand the modern research programs in the light of classical works.
DOI : 10.1051/mmnp/201510501

A. N. Gorban 1 ; G. S. Yablonsky 2

1 Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK
2 Parks College of Engineering, Aviation and Technology Saint Louis University, Saint Louis, MO63103, USA
@article{MMNP_2015_10_5_a0,
     author = {A. N. Gorban and G. S. Yablonsky},
     title = {Three {Waves} of {Chemical} {Dynamics}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--5},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2015},
     doi = {10.1051/mmnp/201510501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510501/}
}
TY  - JOUR
AU  - A. N. Gorban
AU  - G. S. Yablonsky
TI  - Three Waves of Chemical Dynamics
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 1
EP  - 5
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510501/
DO  - 10.1051/mmnp/201510501
LA  - en
ID  - MMNP_2015_10_5_a0
ER  - 
%0 Journal Article
%A A. N. Gorban
%A G. S. Yablonsky
%T Three Waves of Chemical Dynamics
%J Mathematical modelling of natural phenomena
%D 2015
%P 1-5
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510501/
%R 10.1051/mmnp/201510501
%G en
%F MMNP_2015_10_5_a0
A. N. Gorban; G. S. Yablonsky. Three Waves of Chemical Dynamics. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 5, pp. 1-5. doi : 10.1051/mmnp/201510501. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510501/

[1] M.A. Al-Radhawi, D. Angeli. Robust Lyapunov functions for complex reaction networks: An uncertain system framework. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference, IEEE, 2014, 3101–3106.

[2] R. Aris. Introduction to the Analysis of Chemical Reactors, Prentice Hall, Englewood Cliffs, NJ, 1965.

[3] R. Aris Arch. Ration. Mech. Anal. 1965 81 99

[4] R. Aris Arch. Ration. Mech. Anal. 1968 356 364

[5] L. Boltzmann Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 1872 275 370

[6] L. Boltzmann Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 1887 153 164

[7] V.I. Bykov, A.M. Kytmanov, M.Z. Lazman. Elimination methods in polynomial computer algebra. Mathematics and its Applications, V. 448. Springer, 1998.

[8] C. Cercignani, M. Lampis J. Stat. Phys. 1981 795 801

[9] J.A. Christiansen Adv. Catal. 1953 311 353

[10] G. Craciun, A. Dickenstein, A. Shiu, B. Sturmfels J. Symb. Comput. 2009 1551 1565

[11] D. Grigoriev, P.D. Milman Advances in Mathematics 2012 3389 3428

[12] M. Feinberg Arch. Ration. Mech. Anal. 1972 187 194

[13] M. Feinberg Chem. Eng. Sci. 1987 2229 2268

[14] J.W. Gibbs. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Art. Sci., 3 (1876-1878), 108–248, 343–524.

[15]

[16] A.N. Gorban Results in Physics 2014 142 147

[17] A.N. Gorban, V.I. Bykov, G.S. Yablonskii Chem. Eng. Sci. 1986 2739 2745

[18] A.N. Gorban, I. Karlin. Invariant Manifolds for Physical and Chemical Kinetics (Lecture Notes in Physics). Springer, 2005.

[19] A.N. Gorban, I. Karlin Bulletin of the American Mathematical Society 2014 186 246

[20] A.N. Gorban, M. Shahzad Entropy 2011 966 1019

[21] A.N. Gorban, G.S. Yablonskii Chem. Eng. Sci. 2011 5388 5399

[22] C.N. Hinshelwood. The Kinetics of Chemical Change. The Clarendon press, Oxford, 1940.

[23] F. Horn, R. Jackson Arch. Ration. Mech. Anal. 1972 81 116

[24] V.N. Kolokoltsov. Nonlinear Markov processes and kinetic equations. Cambridge Tracks in Mathematics 182, Cambridge Univ. Press, 2010.

[25] F.J. Krambeck Arch. Ration. Mech. Anal. 1970 317 347

[26] M. Lazman, G. Yablonsky Advances in Chemical Engineering 2008 47 102

[27] G.N. Lewis Proceedings of the National Academy of Sciences 1925 179 183

[28] J.C. Maxwell Philosophical Transactions of the Royal Society of London 1867 49 88

[29] S.H. Lam, D.A. Goussis International Journal of Chemical Kinetics 1994 461 486

[30] H.-A. Lorentz Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien 1887 115 152

[31] V. Noel, D. Grigoriev, S. Vakulenko, O. Radulescu Tropical and Idempotent Mathematics and Applications, Contemporary Mathematics 2014 261 277

[32] L. Onsager Phys. Rev. 1931 405 426

[33] G.F. Oster, A.S. Perelson Arch. Ration. Mech. Anal. 1974 230 274

[34] D. Ramkrishna, N.R. Amundson AIChE Journal 2004 7 23

[35] L.A. Segel, M. Slemrod SIAM Rev. 1989 446 477

[36] P.H. Sellers PNAS U.S.A. 1966 693 698

[37] N.N. Semenov. Chemical kinetics and chain reactions. The Clarendon press, Oxford, 1935.

[38] E.C.G. Stueckelberg Théorème H et unitarité de S Helv. Phys. Acta 1952 577 580

[39] G. Szederkényi, K.M. Hangos J. Math. Chem. 2011 1163 1179

[40] J. H. van’t Hoff. Studies in Chemical Dynamics. F. Muller Co, Amsterdam, 1896. [A revised edition of Hoff’s “Etudes de dynamique chimique”. Revised and enlarged by E. Cohen, translated by T. Ewan.]

[41] A.I. Volpert, S.I. Khudyaev. Analysis in classes of discontinuous functions and equations of mathematical physics. Nijoff, Dordrecht, The Netherlands, 1985.

[42] P. Waage, C. M. Guldberg. Studies concerning affinity. Forhandlinger: Videnskabs - Selskabet i Christinia (Norwegian Academy of Science and Letters), (1864), 35–45. [English translation: J. Chem. Educ., 1986, 63 (12), 1044–1047.]

[43] R. Wegscheider Monatshefte für Chemie / Chemical Monthly 1901 849 906

[44] G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin. Kinetic Models of Catalytic Reactions. Elsevier, Amsterdam, The Netherlands, 1991.

[45] A.N. Zaikin, A.M. Zhabotinsky Nature 1970 535 537

Cité par Sources :