Nanoscale Fluid Structure of Liquid-solid-vapour Contact Lines for a Wide Range of Contact Angles
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 111-125.

Voir la notice de l'article provenant de la source EDP Sciences

We study the nanoscale behaviour of the density of a simple fluid in the vicinity of an equilibrium contact line for a wide range of Young contact angles θY ∈ [ 40°,135° ]. Cuts of the density profile at various positions along the contact line are presented, unravelling the apparent step-wise increase of the film height profile observed in contour plots of the density. The density profile is employed to compute the normal pressure acting on the substrate along the contact line. We observe that for the full range of contact angles, the maximal normal pressure cannot solely be predicted by the curvature of the adsorption film height, but is instead softened – likely by the width of the liquid-vapour interface. Somewhat surprisingly however, the adsorption film height profile can be predicted to a very good accuracy by the Derjaguin-Frumkin disjoining pressure obtained from planar computations, as was first shown in [Nold et al., Phys. Fluids, 26, 072001, 2014] for contact angles θY 90°, a result which here we show to be valid for the full range of contact angles. This suggests that while two-dimensional effects cannot be neglected for the computation of the normal pressure distribution along the substrate, one-dimensional planar computations of the Derjaguin-Frumkin disjoining pressure are sufficient to accurately predict the adsorption height profile.
DOI : 10.1051/mmnp/201510407

A. Nold 1 ; D. N. Sibley 1 ; B. D. Goddard 2 ; S. Kalliadasis 1

1 Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
2 The School of Mathematics and Maxwell Institute for Mathematical Sciences The University of Edinburgh, Edinburgh EH9 3JZ, UK
@article{MMNP_2015_10_4_a6,
     author = {A. Nold and D. N. Sibley and B. D. Goddard and S. Kalliadasis},
     title = {Nanoscale {Fluid} {Structure} of {Liquid-solid-vapour} {Contact} {Lines} for a {Wide} {Range} of {Contact} {Angles}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {111--125},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2015},
     doi = {10.1051/mmnp/201510407},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510407/}
}
TY  - JOUR
AU  - A. Nold
AU  - D. N. Sibley
AU  - B. D. Goddard
AU  - S. Kalliadasis
TI  - Nanoscale Fluid Structure of Liquid-solid-vapour Contact Lines for a Wide Range of Contact Angles
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 111
EP  - 125
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510407/
DO  - 10.1051/mmnp/201510407
LA  - en
ID  - MMNP_2015_10_4_a6
ER  - 
%0 Journal Article
%A A. Nold
%A D. N. Sibley
%A B. D. Goddard
%A S. Kalliadasis
%T Nanoscale Fluid Structure of Liquid-solid-vapour Contact Lines for a Wide Range of Contact Angles
%J Mathematical modelling of natural phenomena
%D 2015
%P 111-125
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510407/
%R 10.1051/mmnp/201510407
%G en
%F MMNP_2015_10_4_a6
A. Nold; D. N. Sibley; B. D. Goddard; S. Kalliadasis. Nanoscale Fluid Structure of Liquid-solid-vapour Contact Lines for a Wide Range of Contact Angles. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 111-125. doi : 10.1051/mmnp/201510407. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510407/

[1] A. J. Archer, R. Evans J. Chem. Phys. 2013 014502

[2] J. A. Barker, D. Henderson J. Chem. Phys. 1967 4714 4721

[3] E. S. Benilov, M. Vynnycky J. Fluid Mech. 2013 481 506

[4] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley Rev. Mod. Phys. 2009 739 805

[5] B. V. Derjaguin. Some results from 50 years’ research on surface forces. In Surface Forces and Surfactant Systems, volume 74 of Progress in Colloid Polymer Science, Steinkopff, (1987), 17–30.

[6] B. V. Derjaguin, N. V. Churaev. Properties of water layers adjacent to interfaces. In Clive A. Croxton, editor, Fluid interfacial phenomena, Wiley, New York, (1986), 663–738.

[7] B. V. Derjaguin, E. Obuchov Acta Physicochim. URSS 1936 1 22

[8] S. Dietrich, M. Napiórkowski Phys. Rev. A 1991 1861 1885

[9] R. Evans Adv. Phys. 1979 143 200

[10] R. Evans, J. R. Henderson, D. C. Hoyle, A. O. Parry, Z. A. Sabeur Mol. Phys. 1993 755 775

[11] A. N. Frumkin Acta Physicochim. URSS 1938

[12] T. Getta, S. Dietrich Phys. Rev. E 1998 655 671

[13] J. R. Henderson Eur. Phys. J. Special Topics 2011 129 130

[14] J. R. Henderson Eur. Phys. J. Special Topics 2011 147 148

[15] J. R. Henderson Eur. Phys. J. Special Topics 2011 115 124

[16] A. R. Herring, J. R. Henderson J. Chem. Phys. 2010 084702

[17] R. Lipowsky, M. E. Fisher Phys. Rev. B 1987 2126 2141

[18] L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, J. H. Snoeijer. Drops on soft solids: free energy and double transition of contact angles. J. Fluid Mech., (2014), 747, R1.

[19] L. G. Macdowell Eur. Phys. J. Special Topics 2011 149 150

[20] L. G. Macdowell, J. Benet, N. A. Katcho, J. M. G. Palanco Adv. Colloid Interface Sci. 2014 150 171

[21] A. Malijevský, A. O. Parry Phys. Rev. Lett. 2012 166101

[22] R.-J. C. Merath. Microscopic calculation of line tensions. PhD thesis, Universität Stuttgart, 2008.

[23] G. J. Merchant, J. B . Keller Phys. Fluids A 1992 477 485

[24] N. D. Mermin Phys. Rev. 1965 A1441 A1443

[25] L. V. Mikheev, J. D. Weeks Physica A 1991 495 504

[26] A. Nold, D. N. Sibley, B. D. Goddard, S. Kalliadasis Phys. Fluids 2014 072001

[27] A. Pereira, S. Kalliadasis J. Fluid Mech. 2012 53 77

[28] L. M. Pismen Phys. Rev. E 2001 021603

[29] Y. Rosenfeld Phys. Rev. Lett. 1989 980 983

[30] R. Roth J. Phys.: Condens. Matter 2010 063102

[31] N. Savva, S. Kalliadasis Phys. Fluids 2009 092102

[32] N. Savva, S. Kalliadasis Europhys. Lett. 2011 64004

[33] N. Savva, S. Kalliadasis, G. A. Pavliotis Phys. Rev. Lett. 2010 084501

[34] L. W. Schwartz Langmuir 1998 3440 3453

[35] D. N. Sibley, A. Nold, N. Savva, S. Kalliadasis. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading. J. Eng. Math., DOI: 10.1007/s10665-014-9702-9, 2014.

[36] J. H. Snoeijer, B. Andreotti Phys. Fluids 2008 057101

[37] J. H. Snoeijer, B. Andreotti Annu. Rev. Fluid Mech. 2013 269 292

[38] N. L. Trefethen. Spectral Methods in MATLAB. Vol. 10, SIAM, Philadelphia, 2000.

[39] R. Vellingiri, N. Savva, S. Kalliadasis Phys. Rev. E 2011 036305

[40] J. Wu AIChE J. 2006 1169 1193

[41] P. Yatsyshin, N. Savva, S. Kalliadasis J. Chem. Phys. 2012 124113

[42] P. Yatsyshin, N. Savva, S. Kalliadasis Phys. Rev. E 2013 020402(R)

Cité par Sources :