Voir la notice de l'article provenant de la source EDP Sciences
A. Nold 1 ; D. N. Sibley 1 ; B. D. Goddard 2 ; S. Kalliadasis 1
@article{MMNP_2015_10_4_a6, author = {A. Nold and D. N. Sibley and B. D. Goddard and S. Kalliadasis}, title = {Nanoscale {Fluid} {Structure} of {Liquid-solid-vapour} {Contact} {Lines} for a {Wide} {Range} of {Contact} {Angles}}, journal = {Mathematical modelling of natural phenomena}, pages = {111--125}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2015}, doi = {10.1051/mmnp/201510407}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510407/} }
TY - JOUR AU - A. Nold AU - D. N. Sibley AU - B. D. Goddard AU - S. Kalliadasis TI - Nanoscale Fluid Structure of Liquid-solid-vapour Contact Lines for a Wide Range of Contact Angles JO - Mathematical modelling of natural phenomena PY - 2015 SP - 111 EP - 125 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510407/ DO - 10.1051/mmnp/201510407 LA - en ID - MMNP_2015_10_4_a6 ER -
%0 Journal Article %A A. Nold %A D. N. Sibley %A B. D. Goddard %A S. Kalliadasis %T Nanoscale Fluid Structure of Liquid-solid-vapour Contact Lines for a Wide Range of Contact Angles %J Mathematical modelling of natural phenomena %D 2015 %P 111-125 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510407/ %R 10.1051/mmnp/201510407 %G en %F MMNP_2015_10_4_a6
A. Nold; D. N. Sibley; B. D. Goddard; S. Kalliadasis. Nanoscale Fluid Structure of Liquid-solid-vapour Contact Lines for a Wide Range of Contact Angles. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 111-125. doi : 10.1051/mmnp/201510407. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510407/
[1] J. Chem. Phys. 2013 014502
,[2] J. Chem. Phys. 1967 4714 4721
,[3] J. Fluid Mech. 2013 481 506
,[4] Rev. Mod. Phys. 2009 739 805
, , , ,[5] B. V. Derjaguin. Some results from 50 years’ research on surface forces. In Surface Forces and Surfactant Systems, volume 74 of Progress in Colloid Polymer Science, Steinkopff, (1987), 17–30.
[6] B. V. Derjaguin, N. V. Churaev. Properties of water layers adjacent to interfaces. In Clive A. Croxton, editor, Fluid interfacial phenomena, Wiley, New York, (1986), 663–738.
[7] Acta Physicochim. URSS 1936 1 22
,[8] Phys. Rev. A 1991 1861 1885
,[9] Adv. Phys. 1979 143 200
[10] Mol. Phys. 1993 755 775
, , , ,[11] Acta Physicochim. URSS 1938
[12] Phys. Rev. E 1998 655 671
,[13] Eur. Phys. J. Special Topics 2011 129 130
[14] Eur. Phys. J. Special Topics 2011 147 148
[15] Eur. Phys. J. Special Topics 2011 115 124
[16] J. Chem. Phys. 2010 084702
,[17] Phys. Rev. B 1987 2126 2141
,[18] L. A. Lubbers, J. H. Weijs, L. Botto, S. Das, B. Andreotti, J. H. Snoeijer. Drops on soft solids: free energy and double transition of contact angles. J. Fluid Mech., (2014), 747, R1.
[19] Eur. Phys. J. Special Topics 2011 149 150
[20] Adv. Colloid Interface Sci. 2014 150 171
, , ,[21] Phys. Rev. Lett. 2012 166101
,[22] R.-J. C. Merath. Microscopic calculation of line tensions. PhD thesis, Universität Stuttgart, 2008.
[23] Phys. Fluids A 1992 477 485
,[24] Phys. Rev. 1965 A1441 A1443
[25] Physica A 1991 495 504
,[26] Phys. Fluids 2014 072001
, , ,[27] J. Fluid Mech. 2012 53 77
,[28] Phys. Rev. E 2001 021603
[29] Phys. Rev. Lett. 1989 980 983
[30] J. Phys.: Condens. Matter 2010 063102
[31] Phys. Fluids 2009 092102
,[32] Europhys. Lett. 2011 64004
,[33] Phys. Rev. Lett. 2010 084501
, ,[34] Langmuir 1998 3440 3453
[35] D. N. Sibley, A. Nold, N. Savva, S. Kalliadasis. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading. J. Eng. Math., DOI: 10.1007/s10665-014-9702-9, 2014.
[36] Phys. Fluids 2008 057101
,[37] Annu. Rev. Fluid Mech. 2013 269 292
,[38] N. L. Trefethen. Spectral Methods in MATLAB. Vol. 10, SIAM, Philadelphia, 2000.
[39] Phys. Rev. E 2011 036305
, ,[40] AIChE J. 2006 1169 1193
[41] J. Chem. Phys. 2012 124113
, ,[42] Phys. Rev. E 2013 020402(R)
, ,Cité par Sources :