Step Growth and Meandering in a Precursor-Mediated Epitaxy with Anisotropic Attachment Kinetics and Terrace Diffusion
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 97-110.

Voir la notice de l'article provenant de la source EDP Sciences

Step meandering instability in a Burton-Cabrera-Frank (BCF)-type model for the growth of an isolated, atomically high step on a crystal surface is analyzed. It is assumed that the growth is sustained by the molecular precursors deposition on a terrace and their decomposition into atomic constituents; both processes are explicitly modeled. A strongly nonlinear evolution PDE for the shape of the step is derived in the long-wave limit and without assuming smallness of the amplitude; this equation may be transformed into a convective Cahn-Hilliard-type PDE for the step slope. Meandering is studied as a function of the precursors diffusivity and of the desorption rates of the precursors and adatoms. Several important features are identified, such as: the interrupted coarsening, “facet” bunching, and the lateral drift of the step perturbations (a traveling wave) when the terrace diffusion is anisotropic. The nonlinear drift introduces a disorder into the evolution of a step meander, which results in a pronounced oscillation of the step velocity, meander amplitude and lateral length scale in the steady-state that emerged after the coarsening was interrupted. The mean values of these characteristics are also strongly affected by the drift.
DOI : 10.1051/mmnp/201510406

M. Khenner 1, 2

1 Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101
2 Applied Physics Institute, Western Kentucky University, Bowling Green, KY 42101
@article{MMNP_2015_10_4_a5,
     author = {M. Khenner},
     title = {Step {Growth} and {Meandering} in a {Precursor-Mediated} {Epitaxy} with {Anisotropic} {Attachment} {Kinetics} and {Terrace} {Diffusion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2015},
     doi = {10.1051/mmnp/201510406},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510406/}
}
TY  - JOUR
AU  - M. Khenner
TI  - Step Growth and Meandering in a Precursor-Mediated Epitaxy with Anisotropic Attachment Kinetics and Terrace Diffusion
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 97
EP  - 110
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510406/
DO  - 10.1051/mmnp/201510406
LA  - en
ID  - MMNP_2015_10_4_a5
ER  - 
%0 Journal Article
%A M. Khenner
%T Step Growth and Meandering in a Precursor-Mediated Epitaxy with Anisotropic Attachment Kinetics and Terrace Diffusion
%J Mathematical modelling of natural phenomena
%D 2015
%P 97-110
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510406/
%R 10.1051/mmnp/201510406
%G en
%F MMNP_2015_10_4_a5
M. Khenner. Step Growth and Meandering in a Precursor-Mediated Epitaxy with Anisotropic Attachment Kinetics and Terrace Diffusion. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 97-110. doi : 10.1051/mmnp/201510406. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510406/

[1] M.G. Clerc, E. Tirapegui, M. Trejo Phys. Rev. Lett. 2006 176102

[2] M.G. Clerc, E. Tirapegui, M. Trejo Eur. Phys. J. 2007 407

[3] D. Walgraef Phys. Rev. E 2013 042405

[4] P. Cermelli, M. Jabbour Proc. R. Soc. A 2005 3483

[5] P. Cermelli, M. Jabbour J. Mech. Phys. Solids 2010 810

[6] A. Gocalinska, M. Manganaro, E. Pelucchi, D. D. Vvedensky Phys. Rev. B 2012 165307

[7] A.L.-S. Chua, E. Pelucchi, A. Rudra, B. Dwir, E. Kapon, A. Zangwill, D.D. Vvedensky Appl. Phys. Lett. 2008 0113117

[8] W.K. Burton, N. Cabrera, F.C. Frank Philos. Trans. R. Soc. London, Ser. A 1951 299

[9] A. Pimpinelli, R. Cadoret, E. Gil-Lafon, J. Napierala, A. Trassoudaine J. Cryst. Growth 2003 1

[10] A. Pimpinelli, A. Videcoq Surf. Sci. Lett. 2003 L23

[11] E. Meca, V.B. Shenoy, J. Lowengrub Phys. Rev. E 2013 052409

[12] E. Meca, J. Lowengrub, H. Kim, C. Mattevi, V.B. Shenoy Nano Lett. 2013 5692

[13] G. Danker, O. Pierre-Louis, K. Kassner, C. Misbah Phys. Rev. Lett. 2004 185504

[14] A.A. Golovin, S.H. Davis, A.A. Nepomnyashchy Physica D 1998 202

[15] M. Khenner Phys. Rev. E 2013 022402

[16] A. Zangwill, D.D. Vvedensky. Regimes of precursor-mediated epitaxial growth. arXiv: 0712.1289 (2007).

[17] I. Bena, C. Misbah, A. Valance Phys. Rev. B 1993 7408

[18] Y. Saito, M. Uwaha J. Phys. Soc. Jpn. 1996 3576

[19] F. Gillet, O. Pierre-Louis, C. Misbah Eur. Phys. J. B 2000 519

[20] P. Politi, C. Misbah Phys. Rev. Lett. 2004 090601

[21] P. Politi, C. Misbah Phys. Rev. E 2006 036133

[22] G. Danker, O. Pierre-Louis, K. Kassner, C. Misbah Phys. Rev. E 2003 020601(R)

[23] T. Frisch, A. Verga Phys. Rev. Lett. 2006 166104

[24] M. Guedda, H. Trojette, S. Peponas, M. Benlahsen Phys. Rev. B 2010 195436

[25] F. Hauber, A. Voigt J. Cryst. Growth 2007 80

Cité par Sources :