Voir la notice de l'article provenant de la source EDP Sciences
M. Khenner 1, 2 ; M. Bandegi 1
@article{MMNP_2015_10_4_a4, author = {M. Khenner and M. Bandegi}, title = {Electromigration-driven {Evolution} of the {Surface} {Morphology} and {Composition} for a {Bi-Component} {Solid} {Film}}, journal = {Mathematical modelling of natural phenomena}, pages = {83--96}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2015}, doi = {10.1051/mmnp/201510405}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510405/} }
TY - JOUR AU - M. Khenner AU - M. Bandegi TI - Electromigration-driven Evolution of the Surface Morphology and Composition for a Bi-Component Solid Film JO - Mathematical modelling of natural phenomena PY - 2015 SP - 83 EP - 96 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510405/ DO - 10.1051/mmnp/201510405 LA - en ID - MMNP_2015_10_4_a4 ER -
%0 Journal Article %A M. Khenner %A M. Bandegi %T Electromigration-driven Evolution of the Surface Morphology and Composition for a Bi-Component Solid Film %J Mathematical modelling of natural phenomena %D 2015 %P 83-96 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510405/ %R 10.1051/mmnp/201510405 %G en %F MMNP_2015_10_4_a4
M. Khenner; M. Bandegi. Electromigration-driven Evolution of the Surface Morphology and Composition for a Bi-Component Solid Film. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 83-96. doi : 10.1051/mmnp/201510405. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510405/
[1] W.W. Mullins. Solid surface morphologies governed by capillarity. In Metal Surfaces: Structure, Energetics and Kinetics, 17 (1963) (American Society for Metals, Cleveland, OH).
[2] Appl. Phys. Lett. 1995 798
[3] Phys. Rev. B 1999 11037
,[4] Comp. Mater. Sci. 2001 235
, , , ,[5] J. Appl. Phys. 2011 043521
,[6] Surf. Sci. 1997 345
[7] Phys. Rev. Lett. 1998 2743
, ,[8] Phys. Rev. B 2007 045413
, ,[9] Phys. Rev. Lett. 2006 195901
, ,[10] Phys. Rev. Lett. 2006 135901
[11] Multiscale Model. and Simul. 2010 667
,[12] Phys. Rev. B 2010 153301
, ,[13] Phys. Rev. Lett. 1994 1947
,[14] Phys. Rev. Lett. 1997 278
,[15] Phys. Rev. Lett. 2012 056101
, ,[16] Surf. Sci. Reports 2011 299
[17] Phys. Rev. Lett. 2008 036106
, ,[18] Phys. Rev. E 2002 036603
[19] Appl. Phys. Lett. 2004 4917
,[20] J. Appl. Phys. 2009 053503
[21] C. R. Physique 2013 607
[22] Nanotechnology 2010 445304
, , , , , , ,[23] Nano Lett. 2007 652
, , ,[24] Appl. Phys. Lett. 2006 063120
, , , ,[25] J. Appl. Phys. 1994 3423
,[26] Appl. Phys. Lett. 1998 762
, , ,[27] Phys. Rev. B 1993 5808
,[28] Phys. Rev. E 2003 021606
, , , ,[29] Phys. Rev. B 2001 235318
, ,[30] R.J. Asaro, V.A. Lubarda. Mechanics of Solids and Materials. Cambridge University Press, New York, 2006 (p. 145).
[31] Phys. Rev. E 2013 042405
[32] Computing 1984 297
,[33] W.E. Schiesser. Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs. CRC Press, 1993.
[34] J. Comput. Appl. Math. 1999 93
,[35] SIAM J. Sci. Stat. Comput. 1989 1038
, ,[36] Surf. Sci. 2014 10
, , ,Cité par Sources :