Electromigration-driven Evolution of the Surface Morphology and Composition for a Bi-Component Solid Film
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 83-96.

Voir la notice de l'article provenant de la source EDP Sciences

A two PDEs-based model is developed for studies of a morphological and compositional evolution of a thermodynamically stable alloy surface in a strong electric field, assuming different and anisotropic diffusional mobilities of the two atomic components. The linear stability analysis of a planar surface and the computations of morphology coarsening are performed. It is shown that the conditions for instability and the characteristic wavelength and growth rate differ from their counterparts in a single-component film. Computational parametric analyses reveal the sensitivity of the scaling exponents to the electric field strength and to the magnitude of the anisotropies difference.
DOI : 10.1051/mmnp/201510405

M. Khenner 1, 2 ; M. Bandegi 1

1 Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101
2 Applied Physics Institute, Western Kentucky University, Bowling Green, KY 42101
@article{MMNP_2015_10_4_a4,
     author = {M. Khenner and M. Bandegi},
     title = {Electromigration-driven {Evolution} of the {Surface} {Morphology} and {Composition} for a {Bi-Component} {Solid} {Film}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2015},
     doi = {10.1051/mmnp/201510405},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510405/}
}
TY  - JOUR
AU  - M. Khenner
AU  - M. Bandegi
TI  - Electromigration-driven Evolution of the Surface Morphology and Composition for a Bi-Component Solid Film
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 83
EP  - 96
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510405/
DO  - 10.1051/mmnp/201510405
LA  - en
ID  - MMNP_2015_10_4_a4
ER  - 
%0 Journal Article
%A M. Khenner
%A M. Bandegi
%T Electromigration-driven Evolution of the Surface Morphology and Composition for a Bi-Component Solid Film
%J Mathematical modelling of natural phenomena
%D 2015
%P 83-96
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510405/
%R 10.1051/mmnp/201510405
%G en
%F MMNP_2015_10_4_a4
M. Khenner; M. Bandegi. Electromigration-driven Evolution of the Surface Morphology and Composition for a Bi-Component Solid Film. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 83-96. doi : 10.1051/mmnp/201510405. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510405/

[1] W.W. Mullins. Solid surface morphologies governed by capillarity. In Metal Surfaces: Structure, Energetics and Kinetics, 17 (1963) (American Society for Metals, Cleveland, OH).

[2] D. Maroudas Appl. Phys. Lett. 1995 798

[3] M. Mahadevan, R.M. Bradley Phys. Rev. B 1999 11037

[4] M. Khenner, A. Averbuch, M. Israeli, M. Nathan, E. Glickman Comp. Mater. Sci. 2001 235

[5] O. Akyildiz, T.O. Ogurtani J. Appl. Phys. 2011 043521

[6] S. Stoyanov Surf. Sci. 1997 345

[7] D.J. Liu, J.D. Weeks, D. Kandel Phys. Rev. Lett. 1998 2743

[8] M. Dufay, J.-M. Debierre, T. Frisch Phys. Rev. B 2007 045413

[9] J. Chang, O. Pierre-Louis, C. Misbah Phys. Rev. Lett. 2006 195901

[10] O. Pierre-Louis Phys. Rev. Lett. 2006 135901

[11] J. Quah, D. Margetis Multiscale Model. and Simul. 2010 667

[12] V. Usov, C.O. Coileain, I.V. Shvets Phys. Rev. B 2010 153301

[13] J. Krug, H.T. Dobbs Phys. Rev. Lett. 1994 1947

[14] M. Schimschak, J. Krug Phys. Rev. Lett. 1997 278

[15] F. Barakat, K. Martens, O. Pierre-Louis Phys. Rev. Lett. 2012 056101

[16] D. Maroudas Surf. Sci. Reports 2011 299

[17] V. Tomar, M.R. Gungor, D. Maroudas Phys. Rev. Lett. 2008 036106

[18] R.M. Bradley Phys. Rev. E 2002 036603

[19] D. Du, D. Srolovitz Appl. Phys. Lett. 2004 4917

[20] T.O. Ogurtani J. Appl. Phys. 2009 053503

[21] M. Khenner C. R. Physique 2013 607

[22] L. Valladares, L.L. Felix, A.B. Dominguez, T. Mitrelias, F. Sfigakis, S.I. Khondaker, C.H.W. Barnes, Y. Majima Nanotechnology 2010 445304

[23] T. Taychatanapat, K.I. Bolotin, F. Kuemmeth, D.C. Ralph Nano Lett. 2007 652

[24] G. Gardinowski, J. Schmeidel, H. Phnur, T. Block, C. Tegenkamp Appl. Phys. Lett. 2006 063120

[25] E.G. Colgan, K.P. Rodbell J. Appl. Phys. 1994 3423

[26] J. H. Han, M. C. Shin, S. H. Kang, J. W. Morris Appl. Phys. Lett. 1998 762

[27] F. Liu, H. Metiu Phys. Rev. B 1993 5808

[28] T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy, P. W. Voorhees Phys. Rev. E 2003 021606

[29] B.J. Spencer, P.W. Voorhees, J. Tersoff Phys. Rev. B 2001 235318

[30] R.J. Asaro, V.A. Lubarda. Mechanics of Solids and Materials. Cambridge University Press, New York, 2006 (p. 145).

[31] D. Walgraef Phys. Rev. E 2013 042405

[32] J.G. Verwer, J.M. Sanz-Serna Computing 1984 297

[33] W.E. Schiesser. Computational Mathematics in Engineering and Applied Science: ODEs, DAEs, and PDEs. CRC Press, 1993.

[34] E. Hairer, G. Wanner J. Comput. Appl. Math. 1999 93

[35] P. N. Brown, G. D. Byrne, A. C. Hindmarsh SIAM J. Sci. Stat. Comput. 1989 1038

[36] J. Zhao, R. Yu, S. Dai, J. Zhu Surf. Sci. 2014 10

Cité par Sources :