Pore Growth in a Planar Liquid Membrane
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 76-82.

Voir la notice de l'article provenant de la source EDP Sciences

We study the pore dynamics in a stretched membrane, which is considered as a two-dimensional viscous medium surrounded by a three-dimensional ambient viscous liquid. A closed equation for the pore radius is derived and investigated.
DOI : 10.1051/mmnp/201510404

A. A. Nepomnyashchy 1, 2 ; V. A. Volpert 2

1 Department of Mathematics and Minerva Center for Nonlinear Physics of Complex Systems, Technion- Israel Institute of Technology, Haifa 32000 Israel
2 Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208-3125, USA
@article{MMNP_2015_10_4_a3,
     author = {A. A. Nepomnyashchy and V. A. Volpert},
     title = {Pore {Growth} in a {Planar} {Liquid} {Membrane}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {76--82},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2015},
     doi = {10.1051/mmnp/201510404},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510404/}
}
TY  - JOUR
AU  - A. A. Nepomnyashchy
AU  - V. A. Volpert
TI  - Pore Growth in a Planar Liquid Membrane
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 76
EP  - 82
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510404/
DO  - 10.1051/mmnp/201510404
LA  - en
ID  - MMNP_2015_10_4_a3
ER  - 
%0 Journal Article
%A A. A. Nepomnyashchy
%A V. A. Volpert
%T Pore Growth in a Planar Liquid Membrane
%J Mathematical modelling of natural phenomena
%D 2015
%P 76-82
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510404/
%R 10.1051/mmnp/201510404
%G en
%F MMNP_2015_10_4_a3
A. A. Nepomnyashchy; V. A. Volpert. Pore Growth in a Planar Liquid Membrane. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 4, pp. 76-82. doi : 10.1051/mmnp/201510404. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/201510404/

[1] O.G. Mouritsen Eur. J. Lipid Sci. Technol. 2011 1174 1187

[2] B.V. Deryagin, Y.V. Gutop Colloid J. 1962 370 374

[3] G. Debrégeas, P. Martin, F. Brochard-Wyart Phys. Rev. Lett. 1995 3886 3889

[4] T.L. Andresen, S.S. Jensen, K. Jorgensen Progr. Lipid Res. 2005 68 97

[5] H. Jespersen, J.H. Andersen, H.J. Ditzel, O.G. Mouritsen Biochimie 2012 2 10

[6] G. Enden, A. Schroeder Ann. Biomed. Eng. 2009 2640 2645

[7] H. Isambert Phys. Rev. Lett. 1998 3404 3407

[8] M.A. Idiart, Y. Levin Phys. Rev. E 2004 061922

[9] F. Brochard-Wyart, P.G. De Gennes, O. Sandre Physica A 2000 32 51

[10] T.R. Powers Rev. Mod. Phys. 2010 1607 1631

[11] Z.C. Tu, Z.C. Ou-Yang Phys. Rev. E 2003 061915

[12] V.P. Torchilin Nature Reviews Drug Discovery 2005 145 160

[13] A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza J. Coll. Sci. Biotechn. 2012 147 168

[14] S. Raffy, J. Teissie Biophys. J. 1999 2072 2080

[15] A. Schroeder, Y. Avnir, S. Weisman Langmuir 2007 4019 4025

Cité par Sources :